Funct. Mater. 2022; 29 (4): 567-575.

doi:https://doi.org/10.15407/fm29.04.567

Optical absorption of a composite with randomly distributed metallic inclusions of various shapes

A.V.Korotun, N.I.Pavlyshche

Department of Micro- and Nanoelectronics, National University "Zaporizhzhia Politechnic", 64 Zhukovsky Str., 69063 Zaporizhzhia, Ukraine

Abstract: 

Size-frequency dependencies for the absorption coefficient of a composite with metallic nanoscale inclusions of various geometries have been studied within the concept of the equivalent ellipsoids of revolution. It has been established that the number of absorption coefficient maxima and their values depend on the shape of metallic inclusions while the spectral position of the maxima is determined by the material, and not by the shape of the inclusions. It has been shown that an increase in the attenuation results in a decrease in the absorption coefficient due to the invariability of the integral absorption coefficient.

Keywords: 
metal-dielectric nanocomposite, absorption coefficient, size dependence, surface plasmonic resonance, depolarization factors, effective relaxation time.
References: 
1. H. Ning, Composites and Their Properties, Chiba University, Chiba, Japan (2012).
 
2. I.M. Krishchenko, E.G. Manoilov, S.A. Kravchenko et. al., Theor. Experim. Chem., 56, 67 (2020).
https://doi.org/10.1007/s11237-020-09642-6
 
3. A.A. Koval, A.V. Korotun, Yu.A. Kunitsky et. al., Electrodynamics of plasmon effects in nanomaterials, Kyiv: Naukova dumka, 2021; 344 p. [in Ukrainian].
 
4. A.N. Oraevskii, I.E. Procenko, Pisma v JETF, 72, 641, (2000) [in Russian].
 
5. A.N. Oraevskii, I.E. Procenko, Kvantova elektronika, 31, 252, (2001) [in Russian].
 
6. O.A. Yeshchenko, I.S. Bondarchuk, A.A. Alexeenko et. al., Funct. Mater., 20, 357 (2013).
https://doi.org/10.15407/fm20.03.357
 
7. W. Cai, U.K. Chettiar, A.V. Kildishev et. al., Nat. Photonics, 1, 224, (2007).
https://doi.org/10.1038/nphoton.2007.28
 
8. O.A. Zaimidoroga, V.N. Samoilov, S.E. Procenko, Fiz. el. chastic i atom. yadra, 33, 101, (2002) [in Russian].
 
9. V.V. Klimov, Nanoplasmonics, FL: CRC Press, Taylor and Francis Group, Boca Raton, (2014).
 
10. K.L. Kelly, E. Coronado, L.L. Zhao et. al., J. Phys. Chem. B., 107, 668 (2003).
https://doi.org/10.1021/jp026731y
 
11. N. Toropov, T. Vartanyan, Compreh. Nanosc. Nanotechn, 1-5, 61 (2019).
https://doi.org/10.1016/B978-0-12-803581-8.00585-3
 
12. A.V. Korotun, N.I. Pavlyshche, Phys. Met. Metallogr., 122, 941 (2021).
https://doi.org/10.1134/S0031918X21100057
 
13. G. Chakraborty, A. Sengupta, F. Requejo et. al., J. Appl. Phys., 109, 064504, (2011).
https://doi.org/10.1063/1.3555087
 
14. T. Cesca, B. Kalinic, C. Maurizio et. al., Phys. Status Solidi B, 252, 119, (2015).
https://doi.org/10.1002/pssb.201400106
 
15. H. Liu, D.A. Ferrer, F. Ferdousi et. al., Appl. Phys. Lett. 95, 203112 (2009).
https://doi.org/10.1063/1.3258471
 
16. D. Munthala, A. Mangababu, S.V.S. Nageswara Rao et. al., J. Appl. Phys., 130, 044301 (2021).
https://doi.org/10.1063/5.0054846
 
17. P.K. Jain, K.S. Lee, I.H. El-Sayed et. al., J. Phys. Chem. B, 110, 7238, (2006).
https://doi.org/10.1021/jp057170o
 
18. C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles, John Wiley & Sons (2008).
 
19. N.I. Grigorchuk, P.M. Tomchuk, Phys. Rev. B., 84, 085448 (2011)
https://doi.org/10.1103/PhysRevB.84.085448
 
20. N.I. Grigorchuk, J. Opt. Soc. Am. B, 29, 3404 (2012).
https://doi.org/10.1364/JOSAB.29.003404
 
21. D. Constantin, Eur. Phys. J. E, 38 116 (2015).
https://doi.org/10.1140/epje/i2015-15116-2
 
22. A.V. Korotun, A.A. Koval, V.I. Reva, J. Appl. Spectrosc., 86, 606 (2019).
https://doi.org/10.1007/s10812-019-00866-6

Appl. Spectrosc., 86, 606 (2019).

Current number: