Funct. Mater. 2023; 30 (1): 104-114.

doi:https://doi.org/10.15407/fm30.01.104

Effect and mechanism of action of glass waste powder as an additional binder on the properties of recycled concrete

Qidong Wang1, Minghua Yang2, Xudong Wang1

1Yuanpei College, Shaoxing University, 312000 Shaoxing, China 2Shaoxing Yuelu Traffic Engineering Co., Ltd, 312000 Shaoxing, China

Abstract: 

As an additional binder, glass powder (GP) is a good replacement for cement in the production of recycled aggregate concrete (RAC), which is beneficial for recycling solid waste resources and reducing environmental pollution. The effects of 10 %, 20 % and 30 % by weight of GP which partially replaces cement on the compressive strength, splitting strength, elastic modulus, drying shrinkage, and creep of RAC were studied; the internal microstructure was also analyzed by MIP and nanoindentation techniques. The results show that GP reduces the compressive strength, splitting strength and elastic modulus of RAC at the early stage, while at the later stage, the compressive strength and elastic modulus for RAC containing 10 % and 20 % GP are higher than those of the control group. In addition, a GP additive reduces the drying shrinkage and creep of RAC, and the sample containing 10 % GP shows the best effect. Due to the pozzolanic effect and the effect of microaggregate filling of GP, the microstructure of the RAC matrix and the interfacial transition zone (ITZ) improves.

Keywords: 
glass powder, recycled aggregate concrete, drying shrinkage, creep, microstructure.
References: 
1. P.Zhan, J.Xu, J.Wang et al., J. Clean Prod., 375, 134116 (2022).
https://doi.org/10.1016/j.jclepro.2022.134116
 
2. I.B.Topcu, S.Sengel, Cem. Concr. Res., 34, 1307 (2004).
https://doi.org/10.1016/j.cemconres.2003.12.019
 
3. W.He, G.Liao, Funct. Mater., 28, 737 (2021). 
https://doi.org/10.15407/fm28.04.737
 
4. J.Xiao, H.Li, Z.Yang, Construction and Building Materials, 38, 681 (2013).
https://doi.org/10.1016/j.conbuildmat.2012.09.024
 
5. X.F.Yuan, G.Liao, Funct. Mater., 29, 268 (2022). 
https://doi.org/10.15407/fm29.02.268
 
6. J.de Brito, R.Robles, Indian Journal of Engineering and Materials Sciences, 17, 449 (2010).
 
7. V.I.Sokolenko, E.V.Karaseva, A.V.Mats et al., Funct. Mater., 24, 256 (2017). 
https://doi.org/10.15407/fm24.02.256
 
8. L.Evangelista, J.de Brito, Cem. Concr. Compos., 32, 9 (2010).
https://doi.org/10.1016/j.cemconcomp.2009.09.005
 
9. O.Cakir, Construction and Building Materials, 68, 17 (2014).
https://doi.org/10.1016/j.conbuildmat.2014.06.032
 
10. R.V.Silva, J.de Brito, R.K.Dhir, Journal of Cleaner Production, 112, 2171 (2016).
https://doi.org/10.1016/j.jclepro.2015.10.064
 
11. M.Shariq, J.Prasad, H.Abbas, Cem. Concr. Compos., 68, 35 (2016).
https://doi.org/10.1016/j.cemconcomp.2016.02.004
 
12. Z.-h.He; L.-y.Li; S.-g.Du, Cem. Concr. Compos., 80, 190 (2017).
https://doi.org/10.1016/j.cemconcomp.2017.03.014
 
13. A.M.Rashad, Construction and Building Materials, 72, 340 (2014).
https://doi.org/10.1016/j.conbuildmat.2014.08.092
 
14. S.B.Park, B.C.Lee, J.H.Kim, Cem. Concr. Research, 34, 2181 (2004).
https://doi.org/10.1016/j.cemconres.2004.02.006
 
15. M.Mirzahosseini, K.A.Riding, Cement & Concrete Composites, 56, 95 (2015).
https://doi.org/10.1016/j.cemconcomp.2014.10.004
 
16. M.Carsana, M.Frassoni, L.Bertolini, Cem. Concr. Compos., 45, 39 (2014).
https://doi.org/10.1016/j.cemconcomp.2013.09.005
 
17. M.Mirzahosseini, K.A.Riding, Cem. Concr. Res., 58, 103 (2014).
https://doi.org/10.1016/j.cemconres.2014.01.015
 
18. A.F.Omran, E.D.Morin, D.Harbec, A.Tagnit-Hamou, Construction and Building Materials, 135, 43 (2017).
https://doi.org/10.1016/j.conbuildmat.2016.12.218
 
19. M.Kamali, A.Ghahremaninezhad, Construction and Building Materials, 98, 407 (2015).
https://doi.org/10.1016/j.conbuildmat.2015.06.010
 
20. N.Schwarz, H.Cam, N.Neithalath, Cem. Concr. Compos., 30, 486 (2008).
https://doi.org/10.1016/j.cemconcomp.2008.02.001
 
21. A.Omran, D.Harbec, A.Tagnit-Hamou, R.Gagne, Construction and Building Materials, 133, 450 (2017).
https://doi.org/10.1016/j.conbuildmat.2016.12.099
 
22. H.-Y.Wang, H.-H.Zeng; J.-Y.Wu, Construction and Building Materials, 50, 664 (2014).
https://doi.org/10.1016/j.conbuildmat.2013.09.015
 
23. A.A.Aliabdo, A.E.M.Abd Elmoaty, A.Y.Aboshama, Construction and Building Materials, 124, 866 (2016).
https://doi.org/10.1016/j.conbuildmat.2016.08.016
 
25. J.-X.Lu, B.-J.Zhan, Z.-H.Duan, C.S.Poon, Materials & Design, 135, 102 (2017).
https://doi.org/10.1016/j.matdes.2017.09.016
 
25. G.S.Islam, M.Rahman, N.Kazi, International Journal of Sustainable Built Environment, 6, 37 (2017)
https://doi.org/10.1016/j.ijsbe.2016.10.005
 
26. W.Qidong, Z.Changshun, W.Xudong et al., Materials Research Express, 9, 075008 (2022).
https://doi.org/10.1088/2053-1591/ac80a0
 
27. J.Xu, B.Wang, J.Zuo, Cem. Concr. Compos., 81, 1 (2017).
https://doi.org/10.1016/j.cemconcomp.2017.04.003
 
28. G.Liang, T.Liu, H.Li, K.Wu, Composites Part B: Engineering, 231, 109570 (2022).
https://doi.org/10.1016/j.compositesb.2021.109570
 
29. Z.He, P.Zhan, S.Du et al., Composites Part B-Engineering, 166, 13 (2019)
https://doi.org/10.1016/j.compositesb.2018.11.133
 
30. P.Zhan, J.Xu, J.Wang, C.Jiang, Construction and Building Materials, 307, 125082 (2021).
https://doi.org/10.1016/j.conbuildmat.2021.125082
 
31. P.Mondal, S.P.Shah, L.Marks, Cem. Concr. Res., 37, 1440 (2007).
https://doi.org/10.1016/j.cemconres.2007.07.001
 
32. W.Tang, J.Shi, Z.He et al., AcMCS, 39, 2369 (2022).
 
33. C.Hua, P.Acker, A.Ehrlacher, Cement Concrete Research, 25, 1457 (1995).
https://doi.org/10.1016/0008-8846(95)00140-8

Current number: