Funct. Mater. 2023; 30 (1): 18-23.

doi:https://doi.org/10.15407/fm30.01.18

Conductive properties of solid solutions of the system xYF3-(1-x)BaF2-SnF2

R.M.Pshenychnyi1, O.V.Lysenko2, T.V.Pavlenko2, A.O.Omelchuk2

1Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine
2V.I.Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, 32-34 Acad. Palladina Ave., 03680 Kyiv, Ukraine

Abstract: 

The article is devoted to the study of the effect of replacing Ba2+ ions with Y3+ in the BaSnF4 structure on the conductive properties of Ba1-xYxSnF4+x solid solutions obtained for the first time. The synthesis was carried out in 2 stages. First, solid solutions Ba1-xYxSnF2+x (0.01 < x < 0.15) isostructural with BaF2 (cubic modification) were synthesized by the coprecipitation method. At the next stage, solid solutions Ba1-xYxSnF4+x (x = 0.03, 0.05, 0.10) isostructural with BaSnF4 were prepared by the sintering process. It was established that an increase in the content of yttrium in the structure of the solid solution leads to an increase in conductivity and a decrease in the activation energy of ionic conductivity. It was found that the solid solution Ba0.90Y0.10SnF4.10 (σ = 1.53·10-3 S/cm at 353 K) is characterized by the highest conductivity values among the obtained phases.

Keywords: 
fluoride-ion electrolytes, substitutional solid solutions, X-ray diffraction analysis (XRD), electrical conductivity, activation energy of ionic conduction, impedance spectroscopy.
References: 
1. V.Kumaravel, J.Bartlett, S.C.Pillai, Adv. Energy Mater., 11, 2002869 (2020).
https://doi.org/10.1002/aenm.202002869
 
2. T.Liu, N.Peng, X.Zhang et al., Energy Stor. Mater., 42, 42 (2021).
https://doi.org/10.1016/j.ensm.2021.07.011
 
3. M.A.Nowroozi, I.Mohammad, P.Molaiyan et al., J. Mater. Chem. A, 9, 5980 (2021).
https://doi.org/10.1039/D0TA11656D
 
4. L.N.Patro, K.Hariharan, Solid State Ionics, 239, 41 (2013).
https://doi.org/10.1016/j.ssi.2013.03.009
 
5. I.Mohammad, R.Witter, M.Fichtner et al., ACS Appl. Energy Mater., 2, 1553 (2019).
https://doi.org/10.1021/acsaem.8b02166
 
6. K.Mori, A.Mineshige, T.Emoto et al., J. Phys. Chem. C, 125, 12568 (2021).
https://doi.org/10.1021/acs.jpcc.1c03326
 
7. G.Denes, J.Hantash, A.Muntasar et al., Hyperfine Interact, 170, 145 (2006).
https://doi.org/10.1007/s10751-006-9464-5
 
8. S.Chaudhuri, F.Wang, C.P.Grey, J. Am. Chem. Soc., 124, 11746 (2002).
https://doi.org/10.1021/ja026155j
 
9. L.Liu, L.Yang, M.Liu et al., Journal of Alloys and Compounds, 819, 152983 (2020).
https://doi.org/10.1016/j.jallcom.2019.152983
 
10. L.N.Patro, K.Hariharan, Ionics, 19, 1611 (2013).
https://doi.org/10.1007/s11581-013-0896-z
 
11. L.Liu, L.Yang, D.Shao et al., Ceramics International, 46, 20521 (2020).
https://doi.org/10.1016/j.ceramint.2020.05.161
 
12. M.M.Ahmad, Y.Yamane, K.Yamada, Materials Science and Engineering: B, 178, 965 (2013).
https://doi.org/10.1016/j.mseb.2013.05.011
 
13. R.N.Pshenichny, Y.V.Pogorenko, T.V.Pavlenko et al., Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 62 (2021).
https://doi.org/10.32434/0321-4095-2021-134-1-62-70
 
14. Y.V.Pogorenko, R.M.Pshenychnyi, A.O.Omelchuk et al., Solid State Ion., 338, 80 (2019)
https://doi.org/10.1016/j.ssi.2019.05.001
 
15. R.D.Shannon, Acta Cryst., 32, 751 (1976).
https://doi.org/10.1107/S0567739476001551
 
16. Sh.Yoshikado, Y.Ito, J.M.Reau, Solid State Ionics, 154-155, 503 (2002).
https://doi.org/10.1016/S0167-2738(02)00489-7
 
17. C.Martineau, F.Fayon, C.Legein et al., Chem. Mater., 22, 1585 (2010).
https://doi.org/10.1021/cm9030182
 
18. M.Wortmann, N.Frese, A.Mamun et al., Nanomaterials, 10, 1210 (2020).
https://doi.org/10.3390/nano10061210

Current number: