Funct. Mater. 2023; 30 (1): 35-42.

doi:https://doi.org/10.15407/fm30.01.35

Intensification of the formation process of sodium sulfate-modified biocomposite materials based on the glutinous matrix

V.P.Kashytskyi, O.L.Sadova, S.L.Yanchuk

Lutsk National Technical University, 75 Lvivska Str. Lutsk, Ukraine

Abstract: 

The influence of a modifying additive (sodium sulfate) on the regime of heat treatment of the biocomposition in a mold was studied. The optimal content of sodium sulfate in the biocomposite material was determined. The influence of the content of the modifying additive on the compressive strength of biocomposites structured at different temperatures was studied. The optimal parameters of the thermal field temperature and the duration of heat treatment of the biocomposite for a given content of the additive, which provide the maximum values of mechanical characteristics, are determined. It was established that the modifying additive with an optimal content contributes to an increase in the intensity of structuring of the biopolymer binder. This is manifested in the rapid transition of the glutin binder from the gel-like state to the solid state with the formation of physicochemical bonds due to the removal of excess moisture under the influence of temperature. Fractograms of the fracture surface of the biocomposites containing sodium sulfate are analyzed.

Keywords: 
biocomposite, glutin binder, wood flour, sodium sulfate, heat treatment, compressive strength.
References: 
1. V.P.Kashytskyi, O.L.Sadova, N.V.Shum, Tovaroznavchyi Visnyk, 15, 308 (2022).
 
2. V.P.Kashytskyi, O.L.Sadova, O.V.Zabolotnyi et al., Visnyk, Vinnytskoho Politekhnichnoho Instytut, 1, 95 (2022).
https://doi.org/10.31649/1997-9266-2022-160-1-95-102
 
3. M.Vert, S.M.Li, G.Spenlehauer, P.Guerin, J. Mater. Science Mater. Medicine, 3, 432 (1922).
https://doi.org/10.1007/BF00701240
 
4. L.Averous, N.Boquillon, Carbohydrate Polymers, 56, 111 (2004).
https://doi.org/10.1016/j.carbpol.2003.11.015
 
5. C.N.Hamelinck, G.V.Hooijdonk, A.P.Faaij, Biomass and Bioenergy, 28, 384 (2005).
https://doi.org/10.1016/j.biombioe.2004.09.002
 
6. A.Bismarck, A.Baltazar-Y-Jimenez, K.Sarikakis, Environment, Development and Sustainability, 8, 445 (2006).
https://doi.org/10.1007/s10668-005-8506-5
 
7. H.Ku, H.Wang, N.Pattarachaiyakoop, M.Trada, Composites Part B: Engineering, 42, 856 (2011).
https://doi.org/10.1016/j.compositesb.2011.01.010
 
8. W.Ning, Z.Xiang, H.Na, F.Jianming, J. Thermoplastic Composite Mater., 23, 19 (2010).
https://doi.org/10.1177/0892705709096549
 
9. M.J.John, S.Thomas, Carbohydrate Polymers, 71, 343 (2008).
https://doi.org/10.1016/j.carbpol.2007.05.040
 
10. M.George, P.G.Mussone, Z.Abboud, D.C.Bressler, Appli. Surface Science, 314, 1019 (2014).
https://doi.org/10.1016/j.apsusc.2014.06.080
 
11. T.L.Doan, S.L.Gao, E.Mader, Composit. Science. Techn., 66, 952 (2006).
https://doi.org/10.1016/j.compscitech.2005.08.009
 
12. A.Arbelaiz, B.Fernandez, G.Cantero et al., Composites A: Appl.Science Manufactu., 36, 1637 (2005).
https://doi.org/10.1016/j.compositesa.2005.03.021
 
13. O.O.Sapronov, A.V.Buketov, A.V.Sapronova et al., SAE Int. J. Mater. Manf., 13, 11 (2020).
https://doi.org/10.4271/05-13-01-0006
 
14. P.Wongsriraksa, K.Togashi, A.Nakai, H.Hamada, Adv. Mechanical Eng., 5, 1 (2013).
https://doi.org/10.1155/2013/685104
 
15. J.Gassan, A.K.Bledzki, Composit. Science Techn., 59, 1303 (1999).
https://doi.org/10.1016/S0266-3538(98)00169-9
 
16. M.Z.Rong, M.Q.Zhang, Y.Liu et al., Composit. Science Techn., 61, 1437 (2011).
https://doi.org/10.1016/S0266-3538(01)00046-X
 
17. S.I.Hossain, M.Hasan, M.N,Hasan, A.Hassan, Adv. Mater. Science Eng., 2013, 1 (2013).
https://doi.org/10.1155/2013/824274
 
18. P.Asokan, M.Firdoous, W.Sonal, Adv. Mater. Science, 30, 254 (2012).

Current number: