Funct. Mater. 2023; 30 (2): 149-155.

doi:https://doi.org/10.15407/fm30.02.149

Percolation effects in semiconductor (Bi1-xSbx)2Te3 solid solutions at small Bi concentration

E.I.Rogacheva, K.V.Martynova, O.N.Nashchekina, Yu.V.Men′shov

National technical university &qout;Kharkiv polytechnic institute&qout;, 2 Kyrpychov St., 61002 Kharkiv, Ukraine

Abstract: 

Polycrystalline samples of semiconductor (Bi1-xSbx)2Te3 solid solutions in the range of compositions x = 1 - 0.93 were synthesized. The dependences of microhardness, electrical conductivity, the Hall coefficient, the Seebeck coefficient, concentration and mobility of charge carriers on the solid solution composition x were obtained at room temperature. It was established that in these dependences, concentration anomalies are observed in the same range of compositions (x = 0.995 - 0.98) for different properties, which indicates the presence of a phase transition. It is assumed that this phase transition has a percolation nature and indicates that at a certain concentration of the impurity component (Bi) a continuous chain of interacting impurity atoms that permeates the crystal (an infinite cluster) is formed, and then the interaction becomes collective. These results are another confirmation of our earlier stated assumption that this phenomenon is universal for all solid solutions, and its existence should be taken into account when developing and interpreting the properties of materials.

Keywords: 
(Bi1-xSbx)2Te3 solid solutions; composition; microhardness; electrical conductivity; Hall coefficient; Seebeck coefficient; charge carrier mobility; percolation; phase transition
References: 

1. D.M.Rowe, Thermoelectric Handbook, Macro to Nano. CRC Press, Taylor & Francis Group, Boca Raton (2006).

2. C.Uher, Materials Aspect of Thermoelectricity. CRC Press, Boca Raton (2016).
https://doi.org/10.1201/9781315197029

3. H.J.Goldsmid, Introduction to Thermoelectricity. Springer-Verlag, Berlin, Heidelberg, Germany (2016).
https://doi.org/10.1007/978-3-662-49256-7

4. V.M.Glazov, L.M.Pavlova, Chemical thermodynamics and phase equilibria. Metallurgy, Moscow (1988) [in Russian].

5. D.Stauffer, A.Aharony, Introduction to Percolation Theory. Taylor & Francis, London/Washington, DC (1992).

6. B.I.Shklovskii, A.L.Efros, Electronic Properties of Doped Semiconductors. Springer, Berlin, Heidelberg (1984).
https://doi.org/10.1007/978-3-662-02403-4

7. E.I.Rogacheva, I.M.Krivulkin, V.P.Popov et.al., Phys. Stat. Sol.(a), 148, K65 (1995).
https://doi.org/10.1002/pssa.2211480235

8. E.I.Rogacheva, A.A.Drozdova, O.N.Nashchekina, Phys. Stat. Sol. (a), 207, 344 (2010).
https://doi.org/10.1002/pssa.200925144

9. E.I.Rogacheva, A.N.Doroshenko, O.N.Nash­chekina et.al., Appl. Phys. Letters, 109, 131906 (2016).
https://doi.org/10.1063/1.4963880

10. E.I.Rogacheva, A.N.Doroshenko, T.I.Khramova et.al., J. Phys. Chem. Solids, 143, 109431 (2020).
https://doi.org/10.1016/j.jpcs.2020.109431

11. E.I.Rogacheva, Jpn. J. Appl. Phys, 32, 775 (1993).
https://doi.org/10.7567/JJAPS.32S3.775

12. E.I.Rogacheva, J. Thermoelectricity, 2, 61 (2007).

13. E.I.Rogacheva, O.N.Nashchekina, in: Advanced Thermoelectric Materials. John Willey & Sons, Scrivener Publishing LLC (2019), p. 383.
https://doi.org/10.1002/9781119407348.ch9

14. H.Scherrer, in: Handbook of thermoelectric. CRC Press, London, New York, Washington, Boca Raton, D.C. (1995), p.213.

15. M.J.Smith, R.J.Knight, C.W.Spencer, J. Appl. Phys., 33, 2186 (1962).
https://doi.org/10.1063/1.1728925

16. L.R.Testardi, J.N.Bierly, F.J.Donahoe, J Phys Chem Solids, 23, 1209 (1962)
https://doi.org/10.1016/0022-3697(62)90168-3

17. C.H.Champness, P.T.Chiang, P.Parekh, Canad. J. Physics, 43, 653 (1965).
https://doi.org/10.1139/p65-060

18. H.-W.Jeon, H.-Ph.Ha, D.-B.Hyun et.al., J. Phys. Chem. solids, 52, 579 (1991).
https://doi.org/10.1016/0022-3697(91)90151-O

19. L.D.Ivanova, Yu.V.Granatkina, Inorg. Mater. 36, 672 (2000).
https://doi.org/10.1007/BF02758081

20. L.D.Ivanova, L.I.Petrova, Inorg. Mater., 43, 933 (2007).
https://doi.org/10.1134/S002016850709004X

21. K.Martynova, E.Rogacheva, Funct. Mater., 25, 54 (2018).
https://doi.org/10.15407/fm25.01.054

22. E.I.Rogacheva, K.V.Martynova, A.S.Bondarenko, J. Thermoelectricity, 5, 47 (2016).

23. S.I.Bulychev, V.P.Alyokhin, Testing of materials by continuous indentation of the indenter. Mashinostroenie, Moscow (1990) [in Russian].

24. T.Caillat, M.Carle, D.Perrin et.al., J. Phys. Chem. Solids, 53, 227 (1992).
https://doi.org/10.1016/0022-3697(92)90049-J

25. G.R.Miller, C.-Y.Li, J. Phys. Chem. Solids, 26, 173 (1965).
https://doi.org/10.1016/0022-3697(65)90084-3

26. G.Ghosh, H.L.Lukas, L.Delaey, Z. Metallkde, 80, 731 (1989).
https://doi.org/10.1515/ijmr-1989-801009

27. E.I.Rogacheva, A.V.Budnik, O.S.Vodorez et.al., J. Thermoelectricity, 6, 42 (2014).

28. T.Zhu, L.Hu, X.Zhao, Adv. Sci, 3, 1600004 (2016).
https://doi.org/10.1002/advs.201600004

29. T.Suzuki, H.Yoshinaga, S.Takeuchi, Dislocation Dynamics and Plasticity. Mir, Moscow (1989) [in Russian].

30. R.L.Fleischer, Acta Met., 11, 203 (1963).
https://doi.org/10.1016/0001-6160(63)90213-X

31. R.Labusch, J. Appl. Phys., 39 (9), 4144 (1968)
https://doi.org/10.1063/1.1656938

Current number: