Funct. Mater. 2023; 30 (2): 156-162.

doi:https://doi.org/10.15407/fm30.02.156

Morphological investigations of solid solutions (GaAs)1-x(ZnSe)x doped with < Sb >

A.Sh.Razzokov

Urgench State University, 14 Kh. Alimdjan, Urgench, Uzbekistan

Abstract: 

The possibility of growing (GaAs)1-x(ZnSe)x solid solutions doped with antimony at the onset of crystallization at a temperature TOC = 750°C on a GaAs(100) and GaAs(111) substrates is shown. The method of liquid-phase epitaxy from a limited solution-melt of tin in the cooling rate range of 0.5-3 deg/min was used. The chemical composition, the perfection of the substrate-film boundary, and the surface of the epitaxial layers of (GaAs)1-x(ZnSe)x < Sb > solid solutions were studied using a scanning electron microscope (SEM); the surface roughness of the films was studied using an atomic force microscope (AFM). It is shown that doping of the solid solution with Sb reduces the dislocation density on the film surface to Nd = 7 ·103 cm-2, and on the substrate-film interface - to Nd = 2·104 cm-2. X-ray diffraction studies have shown that the resulting films are single-crystal and have a sphalerite structure. Some electrophysical and photoelectric properties of the samples have been studied.

Keywords: 
solid solution, dislocation, epitaxy, impurity, heterostructure.
References: 

1. A.S.Saidov, E.A.Koshchanov, U.Nasyrov, K.Gaimnazarov, Solar Engineering, 6, 23 (1998).

2. A.S.Saidov, A.Sh.Razzokov, K.Gaimnazarov, Letters ZhTF, 27, 86 (2001).
https://doi.org/10.1134/1.1424410

3. S.Guha, H.Munekata, F.K.LeGoues, L.L.Chang, Appl. Phys. Lett., 60, 3220 (1992).
https://doi.org/10.1063/1.107465

4. G.M.Blom, J.M.Woodall, J. Mater. Electr., 17, 391 (1998).
https://doi.org/10.1007/BF02652124

5. W.C.Mitchel, P.W.Yu, J. Appl. Phys., 62, 4781 (1987).
https://doi.org/10.1063/1.339032

6. K.D.Jamison, H.C.Chen, A.Bensaoula et al., J. Vacuum Scie, Technol., A7, 606 (1989).
https://doi.org/10.1116/1.575896

7. K.Mallik, S.Dhar, S.Sinha, Semicond. Sci. Technol., 9, 1649 (1994).
https://doi.org/10.1088/0268-1242/9/9/012

8. L.Li et., Nano Lett., 17, 622 (2017).
https://doi.org/10.1021/acs.nanolett.6b03326

9. M.Takemura, H.Goto, T.Ido, Japan, J. Appl. Phys., 36, 540 ?????? DOI10.1143/JJAP.36.L540
https://doi.org/10.1143/JJAP.36.L540

10. J.J.Davies, D.Wolverson, G.N.Aliev et al., Scie. Technol., 18, 978 (2003).
https://doi.org/10.1088/0268-1242/18/11/313

11. A.Gangopadhyay et al., Scripta Materialia, 225, 115150 (2023).
https://doi.org/10.1016/j.scriptamat.2022.115150

12. R.Rashid, A.Mahmood, U.Aziz et al., Opt. Mater., 51, 115 (2016).
https://doi.org/10.1016/j.optmat.2015.11.028

13. A.Sh.Razzokov, A.S.Saidov, S.I.Petrushenko, S.V.Dukarev, Functional Materials, 29, 202, (2022). https://doi.org/10.15407/fm29.02.202

14. A.S.Saidov, A.Sh.Razzokov, S.I.Petrushenko, S.V.Dukarov, Acta Physica Polonica A N2, 142, 280 (2022).
https://doi.org/10.12693/APhysPolA.142.280

15. V.M.Andreev, L.M.Dolginov, D.N.Tretyakov, Liquid Epitaxy in Technology Semiconductor Devices, Mod. Radio, Moscow (1975) [in Russian].

16. J.Yu, Y.Namba, Appl. Phys., 73, 3607 (1998).
https://doi.org/10.1063/1.122839

17. C.S.Galbraith, A.E.Flood, S.Rugmai, P.Chirawatkul, Chem. Eng. Technol., 39, 199 (2016).
https://doi.org/10.1002/ceat.201500286

Current number: