Funct. Mater. 2023; 30 (2): 163-170.

doi:https://doi.org/10.15407/fm30.02.163

Organo- and acid-modified laponites in lyotropic and thermotropic liquid crystals

N.O.Kasian, S.S.Minenko, O.M.Samoilov, L.N.Lisetski

Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

DPPC-based phospholipid model membranes with lyotropic lamellar structure and thermotropic liquid crystals of several chemical classes were loaded with particles of laponite (untreated, organomodified and acid-modified). DSC thermograms showed distinct difference between membranotropic action of the three types of laponite, which was related to peculiar interaction features on the molecular level. The general trends were qualitatively similar in thermotropic liquid crystals, evidenced by temperature-dependent optical transmission and polarizing optical microscopy.

Keywords: 
liquid crystals, nanoparticles, laponite, differential scanning calorimetry, polarizing optical microscopy.
References: 

1. J.Prakash, S.Khan, S.Chauhan, A.Biradar, J. Mol. Liq., 297, 112052-1-18 (2020).
https://doi.org/10.1016/j.molliq.2019.112052

2. F.Ahmad, M.Lugman, M.Jamil, Mol. Cryst. Liq. Cryst., 731, 1 (2021).
https://doi.org/10.1080/15421406.2021.1954759

3. E.Samulski, D.Reyes-Arango, A.Vanakaras, D.Photinos, Nanomaterials, 12, 93-1-20 (2022).
https://doi.org/10.3390/nano12010093

4. A.Kumari Singh, S.Pal Singh, Mol. Cryst. Liq. Cryst., 746, 1 (2022).
https://doi.org/10.1080/15421406.2022.2078589

5. M.Gorkunov, M.Osipov, Soft Matter, 7, 4348 (2011).
https://doi.org/10.1039/c0sm01398f

6. M.Gorkunov, G.Shandryuk, A.Shatalova et al., Soft Matter, 9, 3578 (2013).
https://doi.org/10.1039/c3sm27467e

7. M.Rahman, W.Lee, J. Phys. D. Appl. Phys., 42, 063001 (2009).
https://doi.org/10.1088/0022-3727/42/6/063001

8. S.Yadav, S.Singh, Prog. Mater. Sci., 80, 38 (2016).
https://doi.org/10.1016/j.pmatsci.2015.12.002

9. L.Lisetski, M.Soskin, N.Lebovka, Physics of Liquid Matter: Modern Problems, Chapter 10. Springer Proc. in Physics., 171, 2437 (2015).

10. S.Das, Neelam, K.Hussain et al., Curr. Pharm. Design., 25, 424 (2019).
https://doi.org/10.2174/1381612825666190402165845

11. O.Samoilenko, O.Korotych, M.Manilo et al., Soft Matter Systems for Biomedical Applications, Springer Proceedings in Physics, 266, 385, (2022).
https://doi.org/10.1007/978-3-030-80924-9_15

12. O.Yaroshchuk, S.Tomylko, O.Kovalchuk, N.Lebovka, Carbon, 68, 389 (2014).
https://doi.org/10.1016/j.carbon.2013.11.015

13. N.Lebovka, L.Lisetski, L.Bulavin et al. (eds.), Springer Proceedings in Physics, 223, 137 (2019).
https://doi.org/10.1007/978-3-030-21755-6_6

14. L.Bulavin, L.Lisetski, S.Minenko et al., Journal of Molecular Liquids, 267, 279 (2018).
https://doi.org/10.1016/j.molliq.2017.12.078

15. T.Mavromoustakos, Methods in Molecular Biology, Methods in Membrane Lipids, 400, 587 (2007).
https://doi.org/10.1007/978-1-59745-519-0_39

16. L.Lisetski, O.Vashchenko, N.Kasian, A.Krasnikova, Nanobiophysics: Fundamentals and Applications, Ed. V.A. Karachevtsev. Singapore, 6, 163 (2016).

17. L.Lisetski, O.Vashchenko, N.Kasian et al., Soft Matter Systems for Biomedical Applications, 4, 85 (2021).
https://doi.org/10.1007/978-3-030-80924-9_4

18. G.Leite, J. Biol. Phys., 47, 49 (2021).
https://doi.org/10.1007/s10867-021-09564-x

19. L.Bulavin, D.Soloviov, V.Gordeliy et al., Phase Transitions, 88, 582 (2015).
https://doi.org/10.1080/01411594.2014.1002784

20. O.Vashchenko, N.Kasian, L.Budianska, L.Lisetski, Functional Materials, 28, 90 (2021). https://doi.org/10.15407/fm28.01.90

21. N.Kasian, A.Krasnikova, O.Vashchenko et al., Biopolymers and Cell, 31, 146 (2015).
https://doi.org/10.7124/bc.0008DA

22. A.Samoilov, S.Minenko, L.Lisetski et al., Functional Materials, 24, 383 (2017). https://doi.org/10.15407/fm24.03.383

Current number: