Funct. Mater. 2023; 30 (2): 171-177.

doi:https://doi.org/10.15407/fm30.02.171

Structure, optical properties and photocatalytic activity of undoped, Nd2O3-doped ZnO nanocomposites

O.V.Chudinovych1,2, D.V.Myroniuk1, L.A.Myroniuk1, O.V.Shyrokov1, I.M.Danylenko3

1Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky St., 03142 Kyiv, Ukraine
2National Technical University of Ukraine &qout;Igor Sikorsky Kyiv Polytechnic Institute&qout;, 37 Peremohy Ave., 03056 Kyiv, Ukraine
3V.Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauky Ave., 03039 Kyiv, Ukraine

Abstract: 

Nd2O3-doped ZnO nanocomposites were obtained by the Pechini method. The influence of the alloying additive content on the microstructure, morphology, optical properties and photocatalytic activity of the powders were examined. The properties of the nanopowders were studied using X-ray phase analysis, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy. Only one phase is present in the X-ray diffraction patterns of the obtained ZnO powders doped with Nd2O3. According to SEM, the synthesized powders have a conglomerate structure. It was established that the morphology of powder particles primarily depends on the content of Nd3+ in the material. The photocatalytic properties of ZnO powders doped with neodymium oxide was investigated using methyl orange as a model pollutant. The obtained results indicate that the produced powders are potential candidates for practical application in the photocatalytic degradation of organic compounds.

Keywords: 
ZnO-Nd<sub>2</sub>O<sub>3</sub> nanopowders, zinc oxide, neodymium oxide, photocatalysis, degradation.
References: 

1. K.M.Lee, C.W.Lai, K.S.Ngai et al., Water Res., 88, 428 (2016).
https://doi.org/10.1016/j.watres.2015.09.045

2. G.Kumar, S.Koteswara, K.S.R.Rao, RSC Adv., 5, 3306 (2015).
https://doi.org/10.1039/C4RA13299H

3. J.Gupta, P.A.Hassan, K.C.Barick, Mater Today-Proc., 42, 926 (2021).
https://doi.org/10.1016/j.matpr.2020.11.837

4. Y.Zong, Z.Li, X.Wang, Ceram Int., 40, 10375 (2014).
https://doi.org/10.1016/j.ceramint.2014.02.123

5. Z.Zhao, J.-L.Song, J.-H.Zheng et al., T. Nonf. Metal Soc., 24, 1434 (2014).
https://doi.org/10.1016/S1003-6326(14)63209-X

6. J.Zhang, S.J.Deng, S.Y.Liu et al., Mater. Technol., 29, 262 (2014).
https://doi.org/10.1179/1753555713Y.0000000122

7. S.Kumar, P.D.Sahare, J. Rare Earths, 30, 761 (2013).
https://doi.org/10.1016/S1002-0721(12)60126-4

8. O.Yayapao, T.Thongtem, A.Phuruangrat et al., Mater. Lett., 90, 83 (2013).
https://doi.org/10.1016/j.matlet.2012.09.027

9. T.Deepa Rani, K.Tamilarasan, E. Elangovan et al., Superlattice Microst., 42, 10 (2014).

10. Y.Zhou, S.Lu, W.Xu, Environ. Prog. Sustain., 28, 226 (2009).
https://doi.org/10.1002/ep.10318

11. P.Logamani, R.Rajeswari, G.Poongodi, Mater. Sci., 1, 1 (2017).

12. S.B.Satpal, A.A.Athawale, Mater. Res. Express, 5, 1 (2018).
https://doi.org/10.1088/2053-1591/aad26c

13. J.C.Sin, S.M.Lam, Chem. Eng. Commun., 1, 1 (2017).

14. A.Samanta, M.N.Goswami, P.K.Mahapatra, Mater. Res. Express, 6, 65 (2019).
https://doi.org/10.1088/2053-1591/ab0c25

15. Z.N.Kayani, B.Amir, S.Riaz et al., Opt. Mater., 109, 110 (2020).
https://doi.org/10.1016/j.optmat.2020.110287

16. T.Jia, W.Wang, F.Long et al., J. Alloy Compd., 484, 410 (2009).
https://doi.org/10.1016/j.jallcom.2009.04.153

17. C.Li, R.Hun, L.Qin et al., Mater. Lett., 113, 190 (2013).
https://doi.org/10.1016/j.matlet.2013.09.050

18. Z.N.Kayani, B.Amir, S.Riaz et al., Opt. Mater., 109, 110 (2020).
https://doi.org/10.1016/j.optmat.2020.110287

19. N.Clament Sagaya Selvam, J.Judith Vijaya, L.John Kennedy, J. Colloid Interf. Sci., 407, 215 (2013).
https://doi.org/10.1016/j.jcis.2013.06.004

20. P.-T.Hsieh, R.-K.Chuang, C.-Q.Chang et al., J. Sol-Gel. Sci. Techn., 58, 42 (2011).
https://doi.org/10.1007/s10971-010-2352-0

21. T.H.AlAbdulaal, M.AlShadidi, Mai S.A.Hussien et al., Res. Sq., 1, 1 (2019).

22. P.K.Sanoop, S.Anas, S.Ananthakumar et al., Arab. J. Chem., 9, 1618 (2016).
https://doi.org/10.1016/j.arabjc.2012.04.023

23. N.K.Divya, P.P.Pradyumnan, Mater. Sci. Semicon. Process., 41, 428 (2016).
https://doi.org/10.1016/j.mssp.2015.10.004

24. I.S.Boltenkov, E.V.Kolobkova, S.K.Evstropiev, J. Photoch. Photobio A., 367, 458 (2018).
https://doi.org/10.1016/j.jphotochem.2018.09.016

25. Y.Zong, Z.Li, X.Wang et al., Ceram. Inter., 40, 10375 (2014).
https://doi.org/10.1016/j.ceramint.2014.02.123

26. G.B.Bokyi, M.A.Poray-Kosice, X-ray Structure Analysis, Moscow University (1964) [in Russian].

27. S.I.Sydorenko, R.I.Barabash, Modern X-ray Structural Analysis of Real Crystals, Naukova Dumka, Kyiv (1997) [in Ukrainian].

28. T.C.Damen, S.P.S.Porto, B.Tell, Phys. Rev., 142, 570 (1966).
https://doi.org/10.1103/PhysRev.142.570

29. N.Ashkenov, G.Wagner, H.Neumann et al., J. Appl. Phys., 93, 126 (2003).
https://doi.org/10.1063/1.1526935

30. L.Schneider, S.Halm, G.Bacher et al., Phys. Status Solidi C., 3, 1014 (2006).
https://doi.org/10.1002/pssc.200564705

31. D.C.Reynolds, D.C.Look, B.Jogai, J. Appl. Phys., 89, 6189 (2001).
https://doi.org/10.1063/1.1356432

32. E.G.Barbagiovanni, R.Reitano, G.Franzo, Nanoscale, 8, 995 (2016).
https://doi.org/10.1039/C5NR05122C

33. J.Yang, R.Wang, L.Yang et al., J. Alloy Compd., 509, 3606 (2011).
https://doi.org/10.1016/j.jallcom.2010.12.102

34. L.Honglin, L.Yingbo, L.Jinzhu et al., J. Alloy Compd., 617, 102 (2014).
https://doi.org/10.1016/j.jallcom.2014.08.019

35. S.Kumar, P.Sahare, Mater. Res. Bull., 51, 217 (2014).
https://doi.org/10.1016/j.materresbull.2013.12.031

36. J.Cajzl, P.Nekvindova, K.Jenickova et al., Nucl. Instrum Meth. B, 464, 65 (2020).
https://doi.org/10.1016/j.nimb.2019.11.039

37. J.Lang, Q.Zhang, Q.Han et al., Mater. Chem. Phys., 194, 29 (2017).
https://doi.org/10.1016/j.matchemphys.2017.03.010

38. A.Hastir, N.Kohli, R.C.Singh, J. Phys. Chem. Solids, 105, 23 (2017).
https://doi.org/10.1016/j.jpcs.2017.02.004

39. K.Golka, S.Kopps, Z.W.Myslak, Toxicol. Lett., 151, 203 (2004).
https://doi.org/10.1016/j.toxlet.2003.11.016

40. U.Ruh, D.Joydeep, J. Hazard Mater., 156, 194 (2008).
https://doi.org/10.1016/j.jhazmat.2007.12.033

Current number: