Funct. Mater. 2023; 30 (2): 268-274.

doi:https://doi.org/10.15407/fm30.02.268

Approximate computations of linear and nonlinear polarizabilities for conjugated systems within a configuration interaction approach

A.V.Luzanov

SSI &qout;Institute of Single Crystals&qout;, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

We propose a rather easily performed scheme for estimating static polarizabilities and hyperpolarizabilities for π-electron shells of carbon-containing conjugated networks. The scheme is based on the configuration interaction approach restricted to single and double excitations (CISD) with the Davidson size-consistency correction (or shortly CCSDr). We evaluate the accuracy of CCSDr for small systems and applied the method to several classes of conjugated π-structures (aromatic and pseudoaromatic compounds, cationic polymethine dyes etc.). In particular, the comparison is made between the polyacenes and the more stable circumacenes. Our results say that the circumacenes can be considered as more preferable nonlinear optic materials than the related acenes.

Keywords: 
polarizabilities and hyperpolarizabilities, conjugated networks, correlation energy, Davidson correction, aromatics and pseudoaromatics, polymethines.
References: 

1. P.L Davies, Trans. Faraday Soc., 47, 789 (1952).
https://doi.org/10.1039/tf9524800789

2. J.L.Bredas, C.Adant, P.Tackx et al., Chem. Rev., 94, 243 (1994).
https://doi.org/10.1021/cr00025a008

3. M.G.Kuzyk, K.D.Singer, G.I.Stegeman, Adv. Opt. Photon., 5, 4 (2013).
https://doi.org/10.1364/AOP.5.000004

4. A.B.Zakharov, V.V.Ivanov, L.Adamowicz, in Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer New York (2016), p.57.

5. M.Nakano, B.Champagne, Wiley Interdiscip. Rev. Comput. Mol. Sci., 6, 198 (2016).
https://doi.org/10.1002/wcms.1242

6. H.Hameka, J. Chem. Phys., 67, 2935 (1977)
https://doi.org/10.1063/1.435258

E.F.McIntyre, H.F.Hameka, J. Chem. Phys., 68, 5534 (1978).
https://doi.org/10.1063/1.435681

7. C.V.Dyck, T.J.Marks, M.A.Ratner, ACS Nano, 11, 5970 (2017).
https://doi.org/10.1021/acsnano.7b01807

7. A.J.-T.Lou, E.F.C.Dreyer, S.C.Rand, T.J.Marks, J. Phys. Chem. C, 121, 16491 (2017).
https://doi.org/10.1021/acs.jpcc.7b04307

8. K.D.Nanda, A.I.Krylov, J. Chem. Phys., 146, 224103 (2017).
https://doi.org/10.1063/1.4984822

9. X.Li, J. Mol. Liq., 277, 641 (2019).
https://doi.org/10.1016/j.molliq.2018.12.128

10. J.Deb, D.Paul, U.Sarkar, J. Phys. Chem. A, 124, 1312 (2020).
https://doi.org/10.1021/acs.jpca.9b10241

11. I.Shavitt, R.J.Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory, Cambridge University Press, Cambridge (2009).
https://doi.org/10.1017/CBO9780511596834

12. J.Hammond, W.Jong, K.Kowalski, J. Chem. Phys., 128, 224102 (2008).
https://doi.org/10.1063/1.2929840

13. D.Hait, M.Head-Gordon, Phys. Chem. Chem. Phys., 20, 19800 (2018).
https://doi.org/10.1039/C8CP03569E

14. D.M.Wilkins, A.Grisafi, Y.Yang et al., Proc. Natl. Acad. Sci. USA, 116, 3401 (2019).
https://doi.org/10.1073/pnas.1816132116

15. S.Ramasesha, I.D.L.Albert, Chem. Phys. Lett., 154, 5 (1989)
https://doi.org/10.1016/0009-2614(89)87140-4

G.Soos, S.Ramasesha, J.Chem. Phys., 90, 1067 (1989).
https://doi.org/10.1063/1.456160

16. Y.F.Pedash, V.V.Ivanov, A.V.Luzanov, Theor. Experim. Chem., 25, 607 (1989); ibid, 28, 19 (1992).
https://doi.org/10.1007/BF00534439

17. W.Hu, H.Ma, C.Liu, Y.Jiang, J. Chem. Phys., 126, 044903 (2007).
https://doi.org/10.1063/1.2430702

18. S.Wouters, P.A.Limacher, D.V.Neck, P.W.Ayers, J. Chem. Phys., 136, 134110 (2012).
https://doi.org/10.1063/1.3700087

19. Q.X.Li, Y.P.Yi, Z.G.Shuai, J. Comput. Chem., 29, 1650 (2008).
https://doi.org/10.1002/jcc.20934

20. T.Touma, M.Kobayashi, H.Nakai, Theor. Chem. Acc., 130, 701 (2011).
https://doi.org/10.1007/s00214-011-0964-2

21. A.B.Zakharov, V.V.Ivanov, J. Struct. Chem., 52, 645 (2011)
https://doi.org/10.1134/S0022476611040019

V.V.Ivanov, A.B.Zakharov, L.Adamowicz, Mol. Phys., 111, 3779 (2013).
https://doi.org/10.1080/00268976.2013.788742

22. A.V.Luzanov, Y.F.Pedash, Theor. Exp. Chem., 21, 367 (1985).
https://doi.org/10.1007/BF01004506

23. V.V.Ivanov, A.V.Luzanov, J. Struct. Chem., 36, 10 (1997)
https://doi.org/10.1007/BF02768801

A.V.Luzanov, Funct. Mater., 24, 127 (2017).
https://doi.org/10.15407/fm24.01.127

24. E.R.Davidson, D.W.Silver, Chem. Phys. Lett., 52, 403 (1977).
https://doi.org/10.1016/0009-2614(77)80475-2

25. R.J.Bartlett, I.Shavitt, Int. J. Quant. Chem. Symp., 11, 165 (1977).

26. L.Meissner, Chem. Phys. Lett., 146, 204 (1988).
https://doi.org/10.1016/0009-2614(88)87431-1

27. A.V.Luzanov, Funct. Mater., 21, 437 (2014).
https://doi.org/10.15407/fm21.04.437

28. A.V.Luzanov, in: Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2016), p.151.
https://doi.org/10.1007/978-1-4899-7699-4_6

29. A.V.Luzanov, F.Plasser, A.Das, H.Lischka, J. Chem. Phys., 146, 064106 (2017).
https://doi.org/10.1063/1.4975196

30. J.Zyss, J. Chem. Phys., 70, 3333 (1979)
https://doi.org/10.1063/1.437918

G.R.J.Williams, J. Mol. Struct. (Theochem), 151, 215 (1987).
https://doi.org/10.1016/0166-1280(87)85057-1

31. S.Motomura, M.Nakano, H.Fukui et al., Phys. Chem. Chem. Phys., 13, 20575 (2011).
https://doi.org/10.1039/c1cp20773c

32. F.Plasser, H.Pasalic, M.H.Gerzabek et al., Angew. Chem. Int. Ed., 52, 2581 (2013).
https://doi.org/10.1002/anie.201207671

33. J.W.Mullinax, E.Maradzike, L.N.Koulias et al., J. Chem. Theory Comput., 15, 6164 (2019).
https://doi.org/10.1021/acs.jctc.9b00768

34. M.Head-Gordon, Chem. Phys. Lett., 372, 508 (2003).
https://doi.org/10.1016/S0009-2614(03)00422-6

Current number: