Funct. Mater. 2023; 30 (2): 275-281.

doi:https://doi.org/10.15407/fm30.02.275

Fractal modeling the mechanical properties of the metal surface after ion-plasma chrome plating

D.B.Hlushkova1, V.M.Volchuk2, P.M.Polyansky3, V.A.Saenko1, A.A.Efimenko1

1Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Str., 61002 Kharkiv, Ukraine
2Prydniprovska State Academy of Civil Engineering and Architecture, 24a Chernyshevsky Str., 49000 Dnipro, Ukraine
3Mykolayiv National Agrarian University, 136 Cosmonauts Str., 54031 Mykolaiv, Ukraine

Abstract: 

Based on experimental studies, the effect of ion-plasma chrome plating on the wear resistance and mechanical properties of parts has been established, and structural changes in the material have been analyzed. The ion-plasma chrome plating technology ensures chip- and pitting-free operation of the hardened parts and increases their wear resistance by a factor of 1.50 to 1.75. Areas of structural transformation characteristic of secondary hardening phenomena can be observed in the damaged sections. Fractal theory, in particular multifractal analysis using the Renyi equation, has been applied to analyze the non-uniform surface of parts. Models describing the relationship between mechanical properties and multifractal characteristics of the structure are derived: uniformity D600, orderliness (latent periodicity) Δ = D1 - D600, regularity K = D-600 -D600. The adequacy of the models is confirmed by Durbin-Watson statistics at the levels of 2.62 and 3.12. The sensitivity of the investigated multifractal statistical characteristics of cementite to the strength properties σv (0.80) and σ0.2 (0.96), as well as of these characteristics of ferrite to the plastic properties δ (0.97) and ψ (0.97) has been established. The results allow this approach to be used as an express non-destructive testing methodology for predicting the mechanical properties of metallic materials after ion-plasma chrome plating.

Keywords: 
mechanical properties, surface, multifractal, hardening, model, ion-plasma chrome plating.
References: 

1. V.S.Vahrusheva, D.B.Hlushkova, V.M.Volchuk et al., Problems of Atomic Science and Technology, 140, 4 (2022).
https://doi.org/10.46813/2022-140-137

2. P.H.Binh, N.T.Hung, IEEE Photonics Technology Letters, 28, 18 (2016).
https://doi.org/10.1109/LPT.2016.2578964

3. Qi Zhang, Huiqiao Li, Ying Ma et al., Progress in Materials Science, 83 (2016).
https://doi.org/10.1016/j.pmatsci.2016.07.005

4. S.Jagtap, P.Chopade, S.Tadepalli et al., Opto-Electronics Review, 27, 1 (2019).
https://doi.org/10.1016/j.opelre.2019.01.001

5. S.Galkin, I.Rybalka, L.Sidelnikova et al., Journal of Luminescence, 239 (2021).
https://doi.org/10.1016/j.jlumin.2021.118360

6. X.Ropagnol, R.Morandotti, T.Ozaki et al., IEEE Photonics Journal, 3, 2 (2011).
https://doi.org/10.1109/JPHOT.2011.2116112

7. I.Dmitruk, N.Berezovska, V.Degoda et al., Journal of Nanomaterials, 2021 (2021).
https://doi.org/10.1155/2021/6683040

8. U.Choudhari, S.Jagtap, Journal of Electronic Materials, 49 (2020).
https://doi.org/10.1007/s11664-020-08320-6

9. A.O.Sofiienko, V.Y.Degoda, Radiation Measurements, 47, 1 (2012).
https://doi.org/10.1016/j.radmeas.2011.08.017

10. V.K.Nguyen, D.K.Pham, N.Q.Tran et al., Green Processing and Synthesis, 11, 1 (2022).
https://doi.org/10.1515/gps-2022-0001

11. M.H.Abib, X.Yao, G.Li et al., Nano, 11, 08 (2016).
https://doi.org/10.1142/S1793292016500867

12. B.Feng, J.Cao, D.Han et al., Materials Science in Semiconductor Processing, 27 (2014).
https://doi.org/10.1016/j.mssp.2014.08.027

13. A.Chauhan, A.Sudhaik, P.Raizada et al., Process Safety and Environmental Protection, 170 (2023).
https://doi.org/10.1016/j.psep.2022.12.017

14. C.Sun, Y.Gu, W.Wen et al., Optical Materials, 81 (2018).
https://doi.org/10.1016/j.optmat.2018.05.005

15. M.Chinnasamy, R.Rathanasamy, S.Sivaraj et al., Journal of Electronic Materials, 51, 6 (2022).
https://doi.org/10.1007/s11664-022-09554-2

16. D.Li, N.Wei, J.Yang et al., Optical Materials, 132 (2022).

17. J.K.Zhang, J.M.Shi, D.P.Zhao et al., Optical Engineering, 56, 7 (2017).
https://doi.org/10.1117/1.OE.56.7.077110

18. X.Peng, F.Ai, L.Yan et al., Cell Reports Physical Science, 2, 5 (2021).
https://doi.org/10.1016/j.xcrp.2021.100436

19. S.Dehghani, N.K.Nasab, M.Darroudi, Nanomedicine Journal, 9, 1 (2022).

20. A.Pawlis, G.Mussler, C.Krause et al., ACS Applied Electronic Materials, 1, 1 (2018).
https://doi.org/10.1021/acsabm.8b00277

21. M.Godlewski, E.Guziewicz, K.Kopalko et al., Journal of Luminescence, 102 (2003).
https://doi.org/10.1016/S0022-2313(02)00597-5

22. S.R.Vangala, D.Brinegar, V.L.Tassev et al., Journal of Crystal Growth, 522 (2019).
https://doi.org/10.1016/j.jcrysgro.2019.06.032

23. E.A.Mironov, O.V.Palashov, S.S.Balabanov, Optics Letters, 46, 9 (2021).
https://doi.org/10.1364/OL.408437

24. H.Sirringhaus, N.Tessler, R.H.Friend, Science, 280, 5370 (1998).
https://doi.org/10.1126/science.280.5370.1741

25. T.Rakshit, S.Mandal, P.Mishra et al., Journal of Nanoscience and Nanotechnology, 12 (2012).
https://doi.org/10.1166/jnn.2012.5134

26. A.J.Varkey, A.F.Fort, Solar Energy Materials and Solar Cells, 29, 3 (1993).
https://doi.org/10.1016/0927-0248(93)90040-A

27. H.-C.Chiu, C.-S.Yeh, The Journal of Physical Chemistry C, 111, 20 (2007).
https://doi.org/10.1021/jp0688355

28. E.A.Levashov, A.S.Mukasyan, A.S.Rogachev et al., International Materials Reviews, 62, 4 (2017).
https://doi.org/10.1080/09506608.2016.1243291

29. A.S.Rogachev; A.S.Mukasyan, Combustion for Material Synthesis, CRC Press (2014).
https://doi.org/10.1201/b17842

30. Y.Y.Bacherikov, A.V.Gilchuk, A.G.Zhuk et al., Journal of Luminescence, 194 (2018).
https://doi.org/10.1016/j.jlumin.2017.09.010

31. G.Liu, X.Yuan, J.Li et al., Materials & Design, 97 (2016).
https://doi.org/10.1016/j.matdes.2016.02.063

32. Z.Tian, Z.Chen, X.Yuan et al., Ceramics International, 45, 14 (2019).
https://doi.org/10.1016/j.ceramint.2019.05.321

33. Y.Plakhtii, O.Khmelenko, Physica Scripta, 98, 3 (2023).
https://doi.org/10.1088/1402-4896/acb5ca

34. A.V.Kovalenko, Y.G.Plakhtii, O.V.Khmelenko, Functional Materials, 25, 4 (2018). https://doi.org/10.15407/fm25.04.665

35. I.Borovinskaya, A.Gromov, E.A.Levachov et al., "Concise encyclopedia of self-propagating high-temperature synthesis" Elsevier (2017).

36. D.S.Mazing, A.V.Nikiforova, A.S.Osinin et al., Applied Magnetic Resonance, 48 (2017).
https://doi.org/10.1007/s00723-017-0898-5

37. X.G.Zhang, I.A.Rodriguez, P.Li et al., Journal of Electronic Materials, 30 (2001).
https://doi.org/10.1007/BF02665853

38. N.E.Korsunska, Y.Y.Bacherikov, T.R.Stara et al., Semiconductors, 47 (2013).
https://doi.org/10.1134/S1063782613050138

39. M.Verma, A.Kaswan, D.Patidar et al., Journal of Materials Science: Materials in Electronics, 27 (2016).
https://doi.org/10.1007/s10854-016-4912-8

40. V.I.Voronin, I.F.Berger, N.V.Proskurnina et al., The Physics of Metals and Metallography, 117 (2016).
https://doi.org/10.1134/S0031918X16040141

41. A.V.Kovalenko, Y.G.Plakhtii, O.V.Khmelenko, Journal of Nano- and Electronic Physics, 11, 4 (2019).
https://doi.org/10.21272/jnep.11(4).04031

42. A.V.Kovalenko, S.M.Vovk, Y.G.Plakhtii, Functional Materials, 27, 424 (2020). https://doi.org/10.15407/fm27.02.424

43. A.V.Kovalenko, S.M.Vovk, Y.G.Plakhtii, Ukrainian Journal of Physical Optics, 19, 3 (2018).
https://doi.org/10.3116/16091833/19/3/133/2018

44. G.R.Durand, N.Hakmeh, V.Dorcet et al., Journal of the European Ceramic Society, 39, 10 (2019).
https://doi.org/10.1016/j.jeurceramsoc.2019.03.033

45. D.C.Harris, Window and Dome Technologies and Materials, 6545 (2007).

46. D.C.Harris, M.Baronowski, L.Henneman et al., Optical Engineering, 47, 11 (2008).
https://doi.org/10.1117/1.3006123

47. C.Chlique, G.Delaizir, O.Merdrignac-Conanec, Opt. Mater., 33 (2011).
https://doi.org/10.1016/j.optmat.2010.10.008

48. N.E.Kalinina, D.B.Glushkova, A.I.Voronkov et al., Functional Materials, 26, 3 (2019). https://doi.org/10.15407/fm26.03.514

49. D.B.Hlushkova, V.A.Bagrov, S.V.Demchenko et al., Problems of Atomic Science and Technology, 140, 4 (2022).
https://doi.org/10.46813/2022-140-125

50. D.B.Hlushkova, V.A.Bagrov, V.M.Volchuk et al., Functional Materials, 30, 74 (2023). https://doi.org/10.15407/fm30.01.74

51. D.Klets, I.V.Gritsuk, A.Makovetskyi et al., SAE Technical Papers, 2018-01-0015 (2018). https://saemobilus.sae.org/content/2018-01-0015/

52. M.Podrigalo, A.Turenko, V.Bogomolov et al., SAE Technical Papers, 2018-01-1880 (2018). https://saemobilus.sae.org/content/2018-01-1880/

53. M.Mikhalevich, A.Yarita, A.Turenko et al., SAE Technical Papers, 2018-01-1295 (2018). https://saemobilus.sae.org/content/2018-01-1295/

Current number: