Funct. Mater. 2023; 30 (2): 303-308.

doi:https://doi.org/10.15407/fm30.02.303

Liquid crystal sensors for detection of volatile organic compounds: comparative effects of vapor absorption and temperature on the phase state of the sensor material

I.A.Gvozdovskyy1, Y.M.Kachurak2, P.V.Vashchenko3, I.A.Kravchenko4, Z.M.Mykytyuk2

1Institute of Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Department of Electronic Engineering, Lviv Polytechnic National University, Lviv, Ukraine
3Institute for Scintillation Materials, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
4Helmholtz Institute for Pharmaceutical Research Saarland, Campus E8 1, 66123 Saarbrucken, Germany

Abstract: 

A liquid crystal (LC) system comprising the nematic mixture E7 and chiral dopant CB15 was tested as sensor material for detection of ethanol vapors. This material had been shown to undergo a two-stage non-linear variation of optical transmission with time under the action of ethanol vapor. In comparative experiments, ethanol was introduced into the LC layer by absorption from vapor or by direct admixing as liquid. Evaporation kinetics were studied by thermogravimetric analysis (TGA) in both cases. The obtained results allowed data matching for effects of temperature and ethanol introduction on the formation of the &qout;blue phase&qout; (BP) in the sensor material. It has been shown by optical microscopy that the presence of ethanol (dissolved or absorbed) within certain concentration limits was not narrowing the BP temperature range, but just shifted it downwards, thus leading to the BP being induced by ethanol vapor in isothermal conditions.

Keywords: 
liquid crystal, vapor detection, sensor material, ethanol, termogravimetry, blue phase.
References: 

1. J.L.Fergason, Sci. Am., 211, 76 (1964).
https://doi.org/10.1038/scientificamerican0864-76

2. E.J.Poziomek, T.J.Novak, R.A.Mackay, Mol. Cryst. Liq. Cryst., 27, 175 (1974).
https://doi.org/10.1080/15421407408083128

3. D.G.Willey, D.E.Martire, Mol. Cryst. Liq. Cryst., 18, 55 (1972).
https://doi.org/10.1080/15421407208083844

4. T.P.Antonyan, L.N.Lisetski, Zhurn. Fiz. Khimii, 55, 1169 (1981).

5. D.F.Aliev, I.I.Gasanov, L.N.Lisetski, Zhurn. Fiz. Khimii, 63, 558 (1989).

6. J.Zmija, S.Klosowicz, W.Borys, Cholesteryczne Ciekle Krysztaly w Detekcji Promeniowania, Wyd. Naukowo-Techniczne, Warszawa (1989), p.175.

7. J.D.Wright, P.Roisin, G.P.Rigby et al., Sensors and Actuators B, 13, 276 (1993).
https://doi.org/10.1016/0925-4005(93)85380-S

8. D.A.Winterbottom, R.Narayanaswamy, I.R.Raimundo, Sensors and Actuators B, 90, 52 (2003).
https://doi.org/10.1016/S0925-4005(03)00021-2

9. A.Mujahid, H.Stathopoulos, P.A.Lieberzeit et al., Sensors, 10, 4887 (2010).
https://doi.org/10.3390/s100504887

10. P.V.Shibaev, D.Chiappetta, R.L.Sanford et al., Macromolecules, 39, 3986 (2006).
https://doi.org/10.1021/ma052046o

11. N.Kirchner, L.Zedler, T.G.Mayerhofer et al., Chem. Commun., 14, 1512 (2006).
https://doi.org/10.1039/b517768e

12. J.Han, K.Pacheco, C.W.M.Bastiaansen et al., J. Am. Chem. Soc., 132, 2961 (2010).
https://doi.org/10.1021/ja907826z

13. L.Sutarlie, J.Y.Lim, K.-L.Yang, Analyt. Chem., 83, 5253 (2011).
https://doi.org/10.1021/ac200589k

14. H.J.VanTreeck, D.R.Most, B.A.Grinwald et al., Sensors and Actuators B, 158, 104 (2011).
https://doi.org/10.1016/j.snb.2011.05.049

15. X.Ding, K.-L.Yang, Sensors and Actuators B, 173, 607 (2012).
https://doi.org/10.1016/j.snb.2012.07.067

16. A.Sen, K.A.Kupcho, B.A.Grinwald et al., Sensors and Actuators B, 178, 222 (2013).
https://doi.org/10.1016/j.snb.2012.12.036

17. C.-K.Chang, S.-W.Chiu, H.-L.Kuo et al., Appl. Phys. Lett., 100, 043501 (2012).
https://doi.org/10.1063/1.3679680

18. Y.-T.Lai, J.-C.Kuo, Y.-J.Yang, Appl. Phys. Lett., 102, 191912 (2013).
https://doi.org/10.1063/1.4804297

19. O.Aksimentyeva, Z.Mykytyuk, A.Fechan, Mol. Cryst. Liq. Cryst., 589, 83 (2014).
https://doi.org/10.1080/15421406.2013.872354

20. M.Vistak, O.Sushynskyi, Z.Mykytiuk et al., Sensors and Actuators A, 235, 165 (2015).
https://doi.org/10.1016/j.sna.2015.10.001

21. T. Ohzono, T.Yamamoto, J.-I.Fukuda, Nature Comms., 5, 3735 (2014).
https://doi.org/10.1038/ncomms4735

22. P.V.Shibaev, M.Wenzlick, J.Murray et al., Hindawi, 2015, 729186 (2015).
https://doi.org/10.1155/2015/729186

23. P.V.Shibaev, D.Carrozzi, L.Vigilia, H.DeWeese, Liq. Cryst., 46, 1309 (2019)
https://doi.org/10.1080/02678292.2018.1558462

24. P.V.Shibaev, O.Roslyak, J.Plumitallo et al., Applied Physics A, 126, 920 (2020).
https://doi.org/10.1007/s00339-020-04102-3

25. J.Hu, Y.Chen, Z.Ma et al., Optics Letters, 46, 3324 (2021).
https://doi.org/10.1364/OL.427606

26.S.Pagidi, K.S.Pasupuleti, M.Reddeppa et al., Sensors and Actuators B, 370, 132482 (2022).
https://doi.org/10.1016/j.snb.2022.132482

27. M.Vistak, Z.Mykytyuk, F.Vezyr, V.Polishchuk., Mol. Cryst. Liq. Cryst., 672, 67 (2018).
https://doi.org/10.1080/15421406.2018.1542108

28. Z.Mykytyuk, G.Barylo, I.Kremer et al., Phys. Chem. Solid State, 23, 473 (2022).
https://doi.org/10.15330/pcss.23.3.473-477

29. Z.Mykytyuk, H.Barylo, I.Kremer et al., Phys. Chem. Solid State, 24, 64 (2023).
https://doi.org/10.15330/pcss.24.1.64-69

30. I. Gvozdovskyy, Liq. Cryst., 42, 1391 (2015).
https://doi.org/10.1080/02678292.2015.1053001

31. V.Chornous, M.Vovk, M.Bratenko et al., Liq. Cryst., 49, 1322 (2022).
https://doi.org/10.1080/02678292.2022.2031326

32. O.V.Vashchenko, Functional Materials, 21, 482 (2014).
https://doi.org/10.15407/fm21.04.482

Current number: