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In this paper, we study the magnetohydrodynamic (MHD) flow of a ternary hybrid nanofluid 
in a porous medium caused by a stretching  sheet under conditions of heat ab- sorption/gen-
eration and the action of thermal radiation. The stationary convective flow of a ternary hybrid 
nanofluid is considered in the case of linear, quadratic, and nonlinear Rosseland approxima-
tions, taking into account Boussinesq quadratic thermal oscillations. Basic partial differential 
equations (PDEs) are transformed into ordinary differential equa- tions (ODEs) using similarity 
transformations. There are three types of nanoparticles in the fluid flow: spherical, cylindrical, 
and platelets. The boundary value problem (bvp) is used in the Maple computer software to 
solve transformed equations numerically. The computed results for relevant parameters such as 
velocity profile, temperature profile, skin friction coefficient, local Nusselt number are visually 
shown and explained in detail.

Keywords: magnetohydrodynamic flow, ternary hybrid nanofluid, nonlinear Boussinesq ap-
proximation, thermal radiation of Rosseland, stretching sheet.

МГД течія  потрійної гібридної нанорідини по пористому листі, що розтягується, з 
різними ефектами наближень Буссинеска і Росселанда. М. Й. Копп, В. В. Яновський. 

В цій роботі досліджується МГД течія потрійної гібридної нанорідини в пористому 
середовищі, викликана розтягуванням листа, в умовах поглинання/виділення тепла та 
впливу теплового випромінювання. Розглянуто стаціонарну конвективну течію потрійної 
гібридної нанорідини у лінійному, квадратичному та нелінійному наближеннях Росселанда 
з урахуванням квадратичних теплових коливань Бусінеска. Основні диференційни рівняння 
у часткових похідних (РЧП) перетворюються на звичайні диференційни рівняння (ЗДР) 
за допомогою перетворень подібності. У потоці рідини присутні три типи наночастинок: 
сферичні, циліндричні та пластинчасті. Крайова задача (bvp) використовується у 
програмному забезпеченні Maple для чисельного розв’язання перетворених рівнянь. 
Результати обчислень для відповідних параметрів, таких як профіль швидкості, 
температурний профіль, коефіцієнт поверхневого тертя, локальне число Нуссельта наочно 
показані і докладно пояснені.

systems, combustion, geothermal energy, reactor safety, electronics cooling, solar collectors, etc., it is nec-
essary to take into account the phenomenon of nonlinearity in changes in temperature and density when
working at high temperatures. The effect of free convection becomes important when studying the flow of
a fluid caused by a vertically expanding heated sheet if the temperature difference between the sheet and
the surrounding fluid is large enough to cause density gradients in the fluid and due to gravity creating
a buoyant force. In this case, the density fluctuations are nonlinear, and therefore the linear Boussinesq
approximation is no longer suitable for such applications.

In this regard, Goren [1] obtained an expression for density variations that takes into account the
quadratic temperature difference. Vajravelu and Sastri [2] found an expression for the density ρ(T ) using
the Taylor expansion in surface temperature T∞, taking into account quadratic temperature fluctua-
tions. They found that the effect of the quadratic Boussinesq approximation has a noticeable effect on
the velocity and temperature fields. In a porous non-Darcy medium, Partha [3] shown that the velocity
profile increases as the nonlinear convection’s parameters are increased. RamReddy [4], using the nonlin-
ear/quadratic Boussinesq approximation, investigated the power-law fluid’s natural convective flow over
an inclined plate.

With the development of nanotechnology, a new type of liquid has arisen, the so-called nanofluids
[5]. A nanofluid is a colloidal suspension of a nanoscale particle in a base fluid. Metals, oxides, carbides,
and carbon nanotubes are commonly used as nanoparticles, while water and ethylene glycol are used as
the base fluid. Nanofluids have a greater thermal conductivity than regular fluids, which is needed for
the efficient transfer of thermal energy. Nanofluids can take the role of current refrigerants in a number
of sectors, including energy, electronics, transportation, and manufacturing. In regard to this, since the
discovery of this original concept, researchers have been particularly interested in the uses of nanofluids.
The suspension of many nanoparticles in the base fluid results in the creation of a novel type of nanofluid
known as a hybrid nanofluid.

Another important aspect is the study of the phenomenon of thermal radiation in the heat flow of the
boundary layer. The model was developed by Rosseland [6] to study heat radiation for coarse and gray
medium, and it has been widely applied. Viskanta and Grosh [7], Perdikis and Raptis [8], and Cortell [9]
all used the linearized form of the Rosseland radiative heat flux in their studies of boundary layer heat
transfer under the assumption that the system has a small temperature difference.

However, in fluid flow systems where a larger thermal flow is needed, linear radiations are not suitable;
instead, nonlinear thermal radiations are used. Pantokratoras [10] investigated the Rosseland radiation
without any simplification and took into account the system’s large temperature difference. Nevertheless,
in [10] considered the linear Boussinesq approximation of the buoyancy force. The effect of nonlinear ther-
mal radiation on fluid flow near a vertical porous plate in the quadratic Boussinesq approximation was
considered by Jha and Samaila [11]. Waqas et al. [12] looked into the effect of nonlinear thermal radiation
on the non-Newtonian nanofluid flow over a vertical plate subject to convective boundary conditions. Their
results demonstrate that the temperature field is enhanced by nonlinear radiation. Recently, Mahanthesh
[13] considered quadratic radiation and quadratic Boussinesq approximation on hybrid nanoliquid in the
Sakiadis flow of a hybrid nanofluid past a vertical plate. Thriveni and Mahanthesh [14] investigated the
effects of quadratic radiation and the quadratic Boussinesq approximation on the transport of hybrid
nanofluids and determined that these effects improve the heat transport of the fluid system. Mahanthesh
et al. [15] studied the flow of a non-Newtonian nanofluid (Jeffrey nanofluid) driven by a flexible surface
subjected to quadratic thermal radiation and the quadratic Boussinesq approximation. They found that
the heat transfer rate is more sensitive to quadratic thermal radiation than to the zig-zag movement of
nanoparticles and thermophoretic characteristics.

In recent years, a new class of nanofluids has emerged, consisting of three solid nanoparticles dis-
tributed in an ordinary liquid. The term ternary hybrid nanofluid is commonly used to describe these
liquids [16]. Recent studies [17]-[20] by numerous researchers looked at the thermal properties of ternary
fluid.

Guedri et al. [21] studied the two-dimensional nonlinear convective flow of a ternary hybrid nanofluid
on a nonlinearly stretching sheet, taking into account the quadratic Boussinesq approximation and non-
linear thermal radiation. They concluded that the hydrodynamic characteristics decrease with increasing
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values of the volume fraction of solid nanoparticles, porosity, and inertia coefficients and increase at higher
values of the thermal and nonlinear thermal Grashof numbers. The effect of linear and nonlinear Rosse-
land approximations on the three-dimensional flow behavior of a ternary hybrid nanofluid was studied by
Sajjan et al. [22] in the presence of Fourier flows and quadratic Boussinesq thermal oscillations. They ran
the analysis for two different hybrid nanofluid formulations: Case-I and Case-II. Graphene (cylindrical),
carbon nanotubes (spherical), and alumina (platelet) were considered for Case-I, while copper (cylindri-
cal), copper oxide (spherical), and silver oxide (platelet) were studied in Case-II. In [22], it was shown
that, in comparison to Case-II ternary combinations, the temperature distribution in Case-I ternary
mixtures is greater. When compared to a mixture of copper (cylindrical), copper oxide (spherical), and
silver (platelet), a mixture of graphene (cylindrical), carbon nanotubes (spherical), and aluminum oxide
(platelet) has better conductivity. In addition, it was found that as the quadratic convection increased,
the rate of heat transfer increased. Gupta and Rana [23] investigated the 3D magneto stagnation-point
flow of ternary hybrid nanofluid induced by a radially extended infinitely rotating disk with multiple
sliding effects. They conducted a comparative analysis of the heat transfer characteristics of linear ther-
mal radiation, quadratic thermal radiation, and non-linear thermal radiation. As shown in [23], the heat
transfer rate (Nusselt number) in the case of the nonlinear Rosseland approximation is higher than for
the quadratic and linear approximations, and even higher for a ternary nanofluid compared to a pure
liquid.

The abovementioned review of the literature revealed that no detailed studies have been done on
the analysis of three different types of Rosseland thermal radiation on flow and heat transfer over a
porous sheet that is stretching vertically under nonlinear (quadratic) convection. Thus, the novelty of
this study was to conduct a comparative analysis of the mutual influence of three different forms of
Rosseland thermal radiation and quadratic convection (quadratic density temperature variation) on a
ternary nanofluid. So the aim of this study is to study the nonlinear convective flow and heat transfer of
a ternary hybrid nanofluid in the boundary layer when a porous sheet is stretched under the action of
an external transverse magnetic field. To our knowledge, such a study has not yet been described in the
literature.

In the present study, we consider a ternary hybrid nanofluid formed by suspending three types of
water-based CuO, Cu, and Ag nanoparticles. Mathematical formulation is carried out using the laws of
conservation of mass, flow, and heat transfer. Joule heating and heat absorption/generation effects are
included in the energy equations for three different forms of Rosseland thermal radiation. Basic partial
differential equations are converted into a set of ordinary differential equations using a similarity trans-
formation and then solved numerically using the bvp method in Maple software. The results obtained
are presented graphically and discussed. In addition, the effects of skin friction and Nusselt numbers are
described for three different forms of Rosseland thermal radiation.

2. Statement of the problem and mathematical model

Let us consider a two-dimensional convective flow of a ternary hybrid nanofluid on a porous stretching
sheet in a gravity field (see Fig. 1). The x-axis is chosen to run parallel to the vertical surface, whereas
the y-axis is chosen to run perpendicular to it. The surface velocity is assumed to be uw(x), and the
applied magnetic field B0 is determined along the sheet’s normal. It is also assumed that the constant
temperature of the sheet’s surface is Tw, whereas the ambient fluid’s is T∞. The basic equations of ternary
hybrid nanofluid for the flow can be defined as

∂u

∂x
+

∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
=

µthf

ρthf

∂2u

∂y2
− µthf

Kρthf
u−

− σe

ρthf
B2

0u+ gβ0(T − T∞) + gβ1(T − T∞)2 (2)
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Fig. 1. The physical configuration and coordinate system of the problem.

u
∂T

∂x
+ v

∂T

∂y
=

kthf
(ρCp)thf

∂2T

∂y2
−

− 1

(ρCp)thf

∂qr
∂y

+
Q0 (T − T∞)

(ρCp)tnf
+

σe
(ρCp)tnf

B2
0u

2 (3)

All the terms involved in these equations are defined in nomenclature. The following are the boundary
conditions for the investigated model:

u = Uw(x) = ax, v = 0, Tw = T∞ + bx2, at y = 0 (4)

u→ 0, v → 0, T = T∞, at y → ∞ (5)

We assume that Uw(x) = ax and a > 0 for a stretching sheet. The physical quantities of interest are the
local skin friction coefficient Cfx, the local Nusselt number Nux are defined as

Cfx =
µthf
ρfa2x2

(
∂u

∂y

)

y=0

,

Nux =
x

kf (Tw − T∞)

[
−kthf

(
∂T

∂y

)

y=0

+ qr|y=0

]
. (6)

Let the ternary hybrid nanofluid be composed of three sorts of nanoparticles, denoted by indices 1, 2,
and 3. The spherical nanoparticles have a volume of 1, cylindrical nanoparticles have a volume of 2,
and platelet nanoparticles have a volume of 3. The overall volume fraction is the sum of the volume
concentrations of the three dissimilar kinds of nanoparticles:

ϕ = ϕ1 + ϕ2 + ϕ3 (7)

The viscosity and thermal conductivity of ternary nanofluid are as follows:

µtnf
µf

=
B1ϕ1 +B2ϕ2 +B3ϕ3

ϕ
,
κtnf
κf

=
B4ϕ1 +B5ϕ2 +B6ϕ3

ϕ
. (8)

Next, the densities and heat capacities of a ternary hybrid nanofluid are
ρtnf
ρf

= 1− ϕ1 − ϕ2 − ϕ3 + ϕ1
ρsp1

ρbf
+ ϕ2

ρsp2

ρbf
+ ϕ3

ρsp3

ρbf
,
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Fig. 1. The physical configuration and coordinate system of the problem.
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−
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(ρCp)thf
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∂y

+
Q0 (T − T∞)

(ρCp)tnf
+

σe
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0u

2 (3)
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u→ 0, v → 0, T = T∞, at y → ∞ (5)

We assume that Uw(x) = ax and a > 0 for a stretching sheet. The physical quantities of interest are the
local skin friction coefficient Cfx, the local Nusselt number Nux are defined as

Cfx =
µthf
ρfa2x2

(
∂u

∂y

)

y=0

,

Nux =
x

kf (Tw − T∞)

[
−kthf

(
∂T

∂y

)

y=0

+ qr|y=0

]
. (6)

Let the ternary hybrid nanofluid be composed of three sorts of nanoparticles, denoted by indices 1, 2,
and 3. The spherical nanoparticles have a volume of 1, cylindrical nanoparticles have a volume of 2,
and platelet nanoparticles have a volume of 3. The overall volume fraction is the sum of the volume
concentrations of the three dissimilar kinds of nanoparticles:

ϕ = ϕ1 + ϕ2 + ϕ3 (7)

The viscosity and thermal conductivity of ternary nanofluid are as follows:

µtnf
µf

=
B1ϕ1 +B2ϕ2 +B3ϕ3

ϕ
,
κtnf
κf

=
B4ϕ1 +B5ϕ2 +B6ϕ3

ϕ
. (8)

Next, the densities and heat capacities of a ternary hybrid nanofluid are
ρtnf
ρf

= 1− ϕ1 − ϕ2 − ϕ3 + ϕ1
ρsp1

ρbf
+ ϕ2

ρsp2

ρbf
+ ϕ3

ρsp3

ρbf
,

(ρCp)tnf
(ρCp)f

= 1− ϕ1 − ϕ2 − ϕ3 + ϕ1

(ρCp)sp1

(ρCp)bf
+ ϕ2

(ρCp)sp2

(ρCp)bf
+ ϕ3

(ρCp)sp3

(ρCp)bf
. (9)

In equation (8), coefficients B1, B4 correspond to spherical nanoparticles, B2, B5 – to cylindrical nanopar-
ticles, B3, B6 – to platelet nanoparticles, and are defined as

B1 =
µnf1

µf
= 1 + 2.5ϕ+ 6.2ϕ2,

B4 =
κnf1

κf
=

κsp1 + 2κf − 2ϕ (κf − κsp1)

κsp1 + 2κf + ϕ (κf − κsp1)
,

B2 =
µnf2

µf
= 1 + 13.5ϕ+ 904.4ϕ2,

B5 =
κnf2

κf
=

κsp2 + 3.9κf − 3.9ϕ (κf − κsp2)

κsp2 + 3.9κf + ϕ (κf − κsp2)
,

B3 =
µnf3

µf
= 1 + 37.1ϕ+ 612.6ϕ2,

B6 =
κnf3

κf
=

κsp3 + 4.7κf − 4.7ϕ (κf − κsp3)

κsp3 + 4.7κf + ϕ (κf − κsp3)
. (10)

Tab. 2 shows thermophysical constants for some sorts of nanoparticles and base fluids.

Property H2O CuO Cu Ag
ρ[kg ·m−3] 997.1 6500 8933 10500

Cp[J · kg−1 ·K−1] 4179 535.6 385 235

k[W ·m−1 ·K−1] 0.613 20 400 429

Nanoparticle shapes No spherical cylindrical platelet

Numerical values of nanoparticles and base fluid characteristics.

3. Similarity transformation and physical quantities

The partial differential equations (1)-(3) are transformed into ordinary differential equations through
similarity transformation:

u = axf ′(η), v = −√
aνff(η), η = y

√
a

νf
, θ(η) =

T − T∞

Tw − T∞
, (11)

where f, θ are the dimensionless functions, η is the similarity variable. Primes denote differentiation with
regard to η in this context. Note that streamlined flows in this study can be described by the stream
function ψ, which is determined from the relations u = ∂ψ/∂y, v = −∂ψ/∂x, satisfying the continuity
equation (1). The radiative heat flux qr can be defined as [6]

qr = − 4

3k∗
∂

∂y
(σ∗T 4) (12)

The radiant heat flow qr is given by using the Rosseland approximation for three cases:
1) Rosseland linear thermal radiation (RLTR)
Here we use Taylor series expansion to the term T 4 about T∞ and ignoring the higher order terms

T 4 ∼= 4T 3
∞T − 3T 4

∞ (13)
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Eq. (13) is substituted into Eq. (12), and the resulting value is

qr = −16σ∗T 3
∞

3k∗
∂T

∂y
, and − 1

(ρCp)thf

∂qr
∂y

=
16σ∗T 3

∞
3(ρCp)thfk∗

∂2T

∂y2
. (14)

2) Rosseland quadratic thermal radiation (RQTR)
Using the Taylor series expansion of T 4, we restrict ourselves to terms of the second order:

T 4 ≈ T 4
∞ + 4T 3

∞(T − T∞) + 6T 2
∞(T − T∞)2 = 3T 4

∞ − 8T 3
∞T + 6T 2

∞T
2 (15)

Substituting Eq. (15) into Eq. (12), we get

qr =
32σ∗T 3

∞
3k∗

∂T

∂y
− 24σ∗T 2

∞
3k∗

∂

∂y
T 2, and − 1

(ρCp)thf

∂qr
∂y

= − 32σ∗T 3
∞

3(ρCp)thfk∗
∂2T

∂y2
+

24σ∗T 2
∞

3(ρCp)thfk∗
∂2

∂y2
T 2.

(16)
3) Rosseland nonlinear thermal radiation (RNTR)

− 1

(ρCp)thf

∂qr
∂y

=
16σ∗

3(ρCp)thfk∗

(
3T 2 ∂T

∂y

∂T

∂y
+ T 3 ∂

2T

∂y2

)
. (17)

On using (11), (14), (16), and (17), Eqs. (2)-(3) are transformed into the ordinary differential equations
(ODEs) shown below:

A1f
′′′ + ff ′′ − f ′

2 − ϵ1f
′ + λθ + λQcθ

2 = 0 (18)

Energy equation with RLTR:

ϵ2θ
′′ + fθ′ − 2f ′θ +A2Qθ +A2MEcf ′2 = 0 (19)

Energy equation with RQTR:

ϵ2θ
′′ + ϵ3θθ

′′ + fθ′ − 2f ′θ + ϵ3θ
′2 +A2Qθ +A2MEcf ′2 = 0 (20)

Energy equation with RNTR:

ϵ2θ
′′ + ϵ3θθ

′′ + ϵ4θ
2θ′′ + ϵ5θ

3θ′′ + fθ′ − 2f ′θ + ϵ3θ
′2+

+2ϵ4θθ
′2 + 3ϵ5θ

2θ′
2
+A2Qθ +A2MEcf ′2 = 0 (21)

In the above system of equations, the following ratios are used:

A1 =
µthf/µf
ρthf/ρf

, ϵ1 = A1
�K +

(
ρf
ρthf

)
M, ϵ2 =

1

Pr

(
kthf/kf

(ρCp)thf/(ρCp)f

)
+A2

(
Nr

Pr

)
, A2 =

(ρCp)f
(ρCp)thf

,

ϵ3 = 3A2

(
Nr

Pr

)
(θp − 1), ϵ4 = 3A2

(
Nr

Pr

)
(θp − 1)2, ϵ5 = A2

(
Nr

Pr

)
(θp − 1)3. (22)

Dimensionless numbers �K,M, λ,Grx, Rex, P r,Nr,Qc, Q, θp, and Ec denote the dimensionless permeabil-
ity parameter, magnetic parameter, convection parameter, thermal Grashoff number, Reynolds number,
Prandtl number, radiation parameter, parameter of the quadratic (nonlinear) Boussinesq approximation,
heat absorption/generation, temperature ratio parameter, and Eckert number, respectively, where

�K =
νf
aK

, M =
B2

0σe
aρf

, λ =
Grx
Re2x

, Grx =
gβ0(Tw − T∞)x3

ν2f
, Rex =

Uwx

νf
, P r =

νf (ρCp)f
kf

,

Nr =
16σ∗T 3

∞
3kfk∗

, Qc =
β1
β0

(Tw − T∞), Q =
Q0

(ρCp)fa
, θp =

Tw
T∞

, Ec =
U2
w

(Cp)f (Tw − T∞)
. (23)

The related boundary conditions (4)-(5) are transformed as follows:

f(0) = 0, f ′(0) = 1, θ(0) = 1, at η = 0 (24)
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f ′(η) → 0, f(η) → 0, θ(η) → 0, at η → ∞ (25)

Next, using the similarity variables (11), one can easily obtain the expressions for physical quantities (6):

Cf = Cfx

√
Rex =

µthf

µf
f ′′(0),

for the RLTR approximation: Nu = Nux(
√
Rex)

−1 = −
(
kthf
kf

+Nr

)
θ′(0),

for the RQTR approximation: Nu = Nux(
√
Rex)

−1 = −
(
kthf
kf

+Nr + 3Nrθ(0)(θp − 1)

)
θ′(0),

for the RQTR approximation: Nu = Nux(
√
Rex)

−1 = −
(
kthf
kf

+Nr(1 + θ(0)(θp − 1))3
)
θ′(0). (26)

4. Numerical method

In this study, a numerical analysis of the flow of a ternary hybrid nanofluid on a stretching porous
sheet under the influence of a magnetic field, thermal absorption/generation, and thermal radiation is
carried out. We have obtained equations (18)-(21), which are a system of strongly nonlinear ordinary
differential equations for a ternary hybrid nanofluid in the linear, quadratic, and nonlinear Rosseland ap-
proximations. For numerical analysis, we use a water-based ternary hybrid nanofluid with the following
composition: CuO−Cu−Ag−H2O. Spherical copper oxide (CuO), cylindrical copper (Cu), and platelet
silver (Ag) nanoparticles are examples of nanoparticle shapes (see Tab. 2). The bvp method in Maple
computer software is used to solve dimensionless ordinary differential equations (18)-(21) with boundary
conditions (24)-(25). In this method, suitable finite values of η∞ that are replaced by η10 must be chosen.
As a result, all calculations were performed for η∞ = 10 for boundary conditions (25) with an accuracy
of 10−5 .

5. Results and discussion

This section graphically presents the numerical results of the influence of the parameters of the
magnetic field M , thermal radiation Nr, mixed convection λ, the nonlinear Boussinesq approximation
Qc, Eckert number Ec, and the volume concentration of the nanofluid ϕ on dimensionless profiles of
velocity f ′(η) and temperature θ(η), the skin friction coefficient (Cf ), as well as the Nusselt num-
ber (Nu), for different Rosseland approximations. When performing numerical calculations, we assume
that the volume concentration of nanoparticles and the Prandtl number are ϕ = 0.06 and Pr = 4,
respectively. Ternary hybrid nanofluids are studied for 1% of spherical copper oxide (CuO), 2% of cylin-
drical copper (Cu), and 3% of platelet-sized silver (Ag) nanoparticles. The calculations are done for
M = 0.5, �K = 1/9, λ = 0.3, Nr = 1, Qc = 0.1, Q = 0.1, θp = 2.5 and Ec = 0.5.

5..1 Velocity and thermal characteristics

At a fixed value of other parameters, Figures 2a and 2b depict the effect of the magnetic field on the
velocity profile and temperature profile of the ternary hybrid nanofluid, respectively. An external mag-
netic field generates a force called the Lorentz force, which opposes the flow of the fluid. The magnitude
of this force is directly proportional to the magnitude of M . Therefore, an increase in M enhances the
Lorentz force. As M values increase, the velocity profile decreases due to increased resistance to fluid
flow. Slowing down the flow rate allows the nanoparticles

to conduct more heat, and hence a temperature rise occurs. This is especially noticeable for RNTR
compared to other cases (RLTR, RQTR).
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Fig. 2. (a)-(b) Effect of M on f ′(η) and θ(η); (c)-(d) velocity and temperature profiles for various Nr

values; (e)-(f) velocity and temperature profiles for various Qc values. Graphs are built for RLTR, RQTR,
and RNTR cases.

Figures 2c and 2d show the influence of the radiation parameter Nr on the velocity f ′(η) and tem-
perature θ(η) profiles for various cases of the Rosseland approximation. An increase in the Nr parameter
leads to an increase in the flow velocity since an additional part of the radiative heat is transformed into
the kinetic energy of the nanofluid flow. The temperature profile also increases as a result of an increase
in thermal radiation. This effect is significant at large temperature gradients, when it is necessary to
apply the quadratic or nonlinear Rosseland approximation.

The effect of the influence of the quadratic (nonlinear) parameter Boussinesq approximation Qc on
velocity and temperature profiles is presented in Figures 2e and 2f. Since the increase in the parameter
Qc is associated with an increase in the temperature difference, we observe an increase in temperature in
the quadratic and nonlinear Rosseland approximations that is higher than in the linear one. As can be
seen from Fig. 2e, the increase in parameter Qc has a less noticeable effect on the velocity profile than
on the temperature profile.

Figures 3a and 3b show how the convective parameter λ affects the velocity and temperature profiles
for the RLTR, RQTR, and RNTR cases. An increase in the convection parameter λ is directly related to
the dominant influence of buoyancy forces, which naturally leads to a restructuring of the flow and, as a
consequence, an increase in the velocity profile in all cases of the Rosseland approximation. As can be seen
from Fig. 3b, an increase in the convective parameter λ has a twofold effect on the temperature profile,
i.e., near the boundary of the surface, the temperature increases with an increase in λ and decreases far
away.

The effect of the heat generation/adsorption parameter Q and the Eckart number Ec on the velocity
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Fig. 2. (a)-(b) Effect of M on f ′(η) and θ(η); (c)-(d) velocity and temperature profiles for various Nr

values; (e)-(f) velocity and temperature profiles for various Qc values. Graphs are built for RLTR, RQTR,
and RNTR cases.

Figures 2c and 2d show the influence of the radiation parameter Nr on the velocity f ′(η) and tem-
perature θ(η) profiles for various cases of the Rosseland approximation. An increase in the Nr parameter
leads to an increase in the flow velocity since an additional part of the radiative heat is transformed into
the kinetic energy of the nanofluid flow. The temperature profile also increases as a result of an increase
in thermal radiation. This effect is significant at large temperature gradients, when it is necessary to
apply the quadratic or nonlinear Rosseland approximation.

The effect of the influence of the quadratic (nonlinear) parameter Boussinesq approximation Qc on
velocity and temperature profiles is presented in Figures 2e and 2f. Since the increase in the parameter
Qc is associated with an increase in the temperature difference, we observe an increase in temperature in
the quadratic and nonlinear Rosseland approximations that is higher than in the linear one. As can be
seen from Fig. 2e, the increase in parameter Qc has a less noticeable effect on the velocity profile than
on the temperature profile.

Figures 3a and 3b show how the convective parameter λ affects the velocity and temperature profiles
for the RLTR, RQTR, and RNTR cases. An increase in the convection parameter λ is directly related to
the dominant influence of buoyancy forces, which naturally leads to a restructuring of the flow and, as a
consequence, an increase in the velocity profile in all cases of the Rosseland approximation. As can be seen
from Fig. 3b, an increase in the convective parameter λ has a twofold effect on the temperature profile,
i.e., near the boundary of the surface, the temperature increases with an increase in λ and decreases far
away.

The effect of the heat generation/adsorption parameter Q and the Eckart number Ec on the velocity
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Fig. 3. (a)-(b) Impact of λ on f ′(η) and θ(η); (c)-(d) impact of Q on f ′(η) and θ(η); (e)-(f) impact of
Ec on f ′(η) and θ(η). Graphs are built for the RLTR, RQTR and RNTR cases.

and temperature profiles is shown in Figures 3c-3d and 3e-3f. Hence, we see that in all cases of the Rosse-
land approximation, an increase in the parameters Q and Ec increases the temperature of the hybrid
nanofluid.

The Eckart number shows the relationship between kinetic energy and the change in thermal enthalpy.
It is obvious that as Ec rises, the hybrid nanofluid’s kinetic energy rises as well, increasing the velocity
profile.

The velocities and temperature profiles of the hybrid nanofluid increase as the volume fraction of silver
nanoparticles ϕ3 increases in all cases of the Rosseland approximation, as shown in Figures 4a and 4b.
The improvement in the temperature profile is associated with an increase in the thermal conductivity
of the hybrid nanofluid when silver nanoparticles ϕ3 are added to the base fluid. This suggests that the
appliance’s ability to absorb heat is improved, ensuring an ideal temperature and a long life for the device.
We also observe an increase in temperature in the quadratic and nonlinear Rosseland approximations
that is higher than in the linear one. The fluid flow rate increases, as shown in Fig. 4a, due to the increase
in kinetic energy at the increased temperature (thermal energy).

5..2 Skin friction and Nusselt number

In this section, plots of the behavior of the friction coefficient Sf and Nusselt number Nu on some
dimensionless parameters are given for various cases of the Rosseland approximation.

As can be seen from Fig. 5a, with an increase in the parameter M , the skin friction coefficient Sf

decreases. This is due to the fact that with an increase in M , the Lorentz force increases, which leads to
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Fig. 5. a) The influence of the convection parameter λ and magnetic field M on the skin friction coeffi-
cient Sf ; b) the effect of the nonlinear Boussinesq Qc and convection λ parameters on the skin friction
coefficient Sf .

deceleration of the nanofluid flow and, as a consequence, a decrease in the value of Cf . The skin friction
coefficient on the other hand, increases when the convection parameter λ increases. This happens as a
result of the flow velocity increasing with an increase in the parameter λ (see Fig. 3a), which in response
causes an increase in the skin friction coefficient. This effect is especially noticeable for the cases of the
quadratic and nonlinear Rosseland approximations as compared to the linear one.

Figure 5b shows that as the parameter of the quadratic (nonlinear) Boussinesq approximation in-
creases, the skin friction coefficient increases as a result of an improvement in the velocity profile (see
Fig. 2e). This effect is also especially noticeable in the cases of the quadratic and nonlinear Rosseland
approximations as compared to the linear one.

Figures 6a-6b and 6c-6d display the impact of the radiation parameter Nr and the Prandtl number Pr

on the rate of heat transfer depending on the growth of the magnetic field parameter M for the cases of
linear, quadratic, and nonlinear Rosseland approximations. These graphs show that Nu decreases as the
parameter M increases. On the contrary, an increase in the parameters Nr and Pr leads to an increase
in Nu. Figures 6a-6b and 6c-6d demonstrate that the nonlinear Rosseland approximation has a larger
heat transfer rate than the quadratic and linear cases. This is completely justified because the rate of
heat transfer is higher at large temperature gradients, when the nonlinear Rosseland approximation is
appropriate.

As shown in Fig. 6e-6f, with an increase in the convection parameter λ against the background of an
increase in parameters Q and Ec, the heat transfer rate decreases. On Fig. 6e-6f, it is also shown that the
nonlinear Rosseland approximation has a higher heat transfer rate than the quadratic and linear cases.
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deceleration of the nanofluid flow and, as a consequence, a decrease in the value of Cf . The skin friction
coefficient on the other hand, increases when the convection parameter λ increases. This happens as a
result of the flow velocity increasing with an increase in the parameter λ (see Fig. 3a), which in response
causes an increase in the skin friction coefficient. This effect is especially noticeable for the cases of the
quadratic and nonlinear Rosseland approximations as compared to the linear one.

Figure 5b shows that as the parameter of the quadratic (nonlinear) Boussinesq approximation in-
creases, the skin friction coefficient increases as a result of an improvement in the velocity profile (see
Fig. 2e). This effect is also especially noticeable in the cases of the quadratic and nonlinear Rosseland
approximations as compared to the linear one.

Figures 6a-6b and 6c-6d display the impact of the radiation parameter Nr and the Prandtl number Pr

on the rate of heat transfer depending on the growth of the magnetic field parameter M for the cases of
linear, quadratic, and nonlinear Rosseland approximations. These graphs show that Nu decreases as the
parameter M increases. On the contrary, an increase in the parameters Nr and Pr leads to an increase
in Nu. Figures 6a-6b and 6c-6d demonstrate that the nonlinear Rosseland approximation has a larger
heat transfer rate than the quadratic and linear cases. This is completely justified because the rate of
heat transfer is higher at large temperature gradients, when the nonlinear Rosseland approximation is
appropriate.

As shown in Fig. 6e-6f, with an increase in the convection parameter λ against the background of an
increase in parameters Q and Ec, the heat transfer rate decreases. On Fig. 6e-6f, it is also shown that the
nonlinear Rosseland approximation has a higher heat transfer rate than the quadratic and linear cases.
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Fig. 6. a) The effect of the radiation parameter Nr and magnetic field M on the Nusselt number Nu;
b) for the case of RLTR, a more detailed graph of the influence of the radiation parameter Nr and the
magnetic field M on the Nusselt number Nu; c) the effect of Prandtl number Pr and magnetic field M

on the Nusselt number Nu; d) for the case of RLTR, a more detailed graph of the influence of Prandtl
number Pr and the magnetic field M on the Nusselt number Nu; e) the influence of the convection λ

and heat absorption/generation Q parameters on the Nusselt number Nu; f) the effect of the convection
λ parameter and Eckert number Ec on the Nusselt number Nu.

6. Conclusion

In this study, we have investigated the MHD flow of a ternary hybrid nanofluid past a linearly stretch-
ing vertical porous sheet, taking into account the effects of the Bousinesq quadratic approximation and
three different forms of the Rosseland approximation: linear, quadratic, and nonlinear radiation effects.
In our analysis, we used the thermophysical properties of a ternary hybrid nanofluid CuO-Cu-Ag-H2O
with nanoparticles of various densities and shapes. The bvp method in the Maple software was used to
solve the self-similarity governing equations. The main results of this study are as follows:

1. Increasing the parameters radiation Nr, the quadratic Boussinesq approximation Qc, convection λ,
heat absorption/generation Q, Eckert number Ec, and the volume fraction of silver nanoparticles



254 Functional materials,  30,  2,  2023

M.I. Kopp,  V.V. Yanovsky / MHD ternary hybrid nanofluid flow ... 

ϕ3 leads to an increase in the nanofluid flow rate. In this case, the velocity profiles and the thickness
of the boundary layer are smaller for case RLTR compared to cases RQTR and RNTR.

2. The ternary hybrid nanofluid flow rate is decreased by the growing magnetic field M .

3. An increase in the magnetic field M leads to an increase in the temperature of the nanofluid, much
more so in case RNTR than in cases RLTR and RQTR.

4. The absolute value of skin friction coefficients Cf increases with an increase in the magnetic field
parameter M and decreases with an increase in the convection parameter λ and the quadratic
Boussinesq approximation Qc parameter. In this case, the absolute value of skin friction coefficients
Cf is smaller for case RNTR than for cases RQTR and RLTR.

5. The local Nusselt number (rate of heat transfer) Nu decreases as the values of the parameters Pr,
Nr, and M increase. On the other hand, an increase in the value of parameters Q and Ec reduces
the heat transfer rate Nu with an increase in parameter λ.

This paper investigated some flow and heat transfer phenomena along an stretching porous vertical
plate. The phenomena of convective heat transfer with thermal radiation are observed in solar power
plants, gas production, spacecraft, etc. Therefore, the present study can find application in the systems
listed above. However, our attention was limited to the two-dimensional flow of a Newtonian ternary
hybrid nanofluid, taking into account the quadratic Boussinesq approximation and three different forms
of Rossland thermal radiation. Therefore, in future studies, three-dimensional flows of non-Newtonian
nanofluids along an stretching/shrinking surface in two lateral directions can be considered, taking into
account the influence of external forces, such as the Lorentz and Coriolis forces.
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