Funct. Mater. 2023; 30 (3): 325-331.

doi:https://doi.org/10.15407/fm30.03.325

Effect of temperature on luminescence properties of Eu2+-doped calcium chloroborate

I.V.Berezovskaya, V.P.Dotsenko, O.V.Khomenko, N.P.Efryushina

A.V.Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya Doroga, 65080 Odessa, Ukraine

Abstract: 

Calcium chloroborate Ca2BO3Cl doped with Eu2+ ions is known as the promising phosphor for white LEDs. Recently, this material has attracted additional attention due to its very long persistent luminescence. In the present work, the luminescence properties of Eu2+ ions in Ca2BO3Cl were studied for the first time at cryogenic temperatures. It is shown that with increasing temperature from 80 K (10 K) to 293 K, the maximum of the Eu2+ 4f65d→4f7 emission is shifted to shorter wavelengths from ~ 590 nm to 576 nm and the full width at half maximum of the emission band increases from 2185 to 2980 cm-1. The blue shift of the Eu2+ emission maximum is ascribed to temperature induced population of higher energy Eu2+ 4f65d states. At 80 K, the decay time of the Eu2+ emission in Ca2BO3Cl was found to be somewhat smaller than that recorded at 293 K (1.05 μs vs. 1.14 μs). Possible explanations for this unusual observation are also discussed.

Keywords: 
calcium chloroborate, europium, luminescence, defects.
References: 

Get persistent links for your reference list or bibliography.
Copy and paste the list, we’ll match with our metadata and return the links.

Members may also deposit reference lists here too.

1. S.Ye, F.Xiao, Y.X. Pan et al., Mater. Sci. Eng. R, 71, 1 (2010).
https://doi.org/10.1016/j.mser.2010.07.001

2. Borate Phosphors. Processing to Applications, ed. by S.K.Omanwar, R.P.Sonekar, N.S.Bajaj, CRC Press Taylor & Francis Group, London New York (2022).

3. Y.Jin, Y.Hu, L.Chen, X.Wang, J. Am. Ceram. Soc., 97, 2573 (2014).
https://doi.org/10.1111/jace.12985

4. W.Zeng, Y.Wang, S.Han et al., J. Mater. Chem. C, 1, 3004 (2013).
https://doi.org/10.1039/c3tc30182f

5. J.Xu, S.Tanabe, J. Lumin., 205, 581 (2019).
https://doi.org/10.1016/j.jlumin.2018.09.047

6. D.Poelman, D.Van der Heggen, J.Du et al., J. Appl. Phys., 128, 240903 (2020).
https://doi.org/10.1063/5.0032972

7. C.Guo, L.Luan, F.G.Shi et al., J. Electrochem. Soc., 156, J125 (2009).
https://doi.org/10.1149/1.3106039

8. W.Zeng, Y.Wang, M.Zheng et al., J. Alloys Compd., 825, 154143 (2020).
https://doi.org/10.1016/j.jallcom.2020.154143

9. A.Mao, Z.Zhao, T.Seto et al., Mater. Des., 180, 107865 (2019).
https://doi.org/10.1016/j.matdes.2019.107865

10. Z.Zak, F.Hanic, Acta Cryst. B, 32, 1784 (1976).
https://doi.org/10.1107/S0567740876006390

11. Z.Yang, S.Wang, G.Yang et al., Mater. Lett., 61, 5258 (2007).
https://doi.org/10.1016/j.matlet.2007.04.042

12. I.V.Berezovskaya, N.P.Efryushina, A.S.Voloshinovskii et al., Inorg. Mater., 48, 539 (2012).
https://doi.org/10.1134/S0020168512050032

13. X.Zhang, J.Zhang, Z.Dong et al., J. Lumin., 132, 914 (2012).
https://doi.org/10.1016/j.jlumin.2011.11.001

14. X.Zhang, M.Gong, Mater. Chem. Phys., 124, 1243 (2010).
https://doi.org/10.1016/j.matchemphys.2010.08.065

15. P.Dorenbos, J.Phys.:Condens. Matter., 15, 4797 (2003).
https://doi.org/10.1088/0953-8984/15/27/311

16. I.V.Berezovskaya, Shi-Hang Zhou, Min Yin et al., J. Lumin., 244, 118730 (2022).
https://doi.org/10.1016/j.jlumin.2022.118730

17. J.Cao, S.Ding, Y.Zhou et al., J. Mater. Chem. C, 10, 12266 (2022).
https://doi.org/10.1039/D2TC02382B

18. P.Dorenbos, J. Lumin., 104, 239 (2003).
https://doi.org/10.1016/S0022-2313(03)00078-4

19. V.P.Dotsenko, I.V.Berezovskaya, N.P.Efryushina et al., Opt. Mater., 31, 1428 (2009).
https://doi.org/10.1016/j.optmat.2009.01.010

20. V.P.Dotsenko, I.V.Berezovskaya, N.P.Efryushina et al., Radiat. Meas., 42, 803 (2007).
https://doi.org/10.1016/j.radmeas.2007.02.019

21. M.Tian, Z.Wang, W.Li et al., J. Alloys Compd., 787, 1004 (2019).
https://doi.org/10.1016/j.jallcom.2019.02.178

22. S.H.M.Poort, A.Meyerink, G.Blasse, J. Phys. Chem. Solids, 58, 1451 (1997).
https://doi.org/10.1016/S0022-3697(97)00010-3

23. S.Yan, Opt. Mater., 79, 172 (2018).
https://doi.org/10.1016/j.optmat.2018.03.026

24. C.Guo, L.Luan, L.Shi et al., Electrochem. Solid-State Lett., 13, J28 (2010).
https://doi.org/10.1149/1.3294847

25. M.Suta, P.Larsen, F.Lavoie-Cardinal et al., J. Lumin., 149, 35 (2014).
https://doi.org/10.1016/j.jlumin.2013.12.040

26. S.Adachi, ECS J. Solid State Sci. Technol., 12, 016002 (2023).
https://doi.org/10.1149/2162-8777/acaeb9

27. C.K.Duan, A.Meijerink, R.J.Reeves et al., J. Alloys Compd., 408-412, 784 (2006).
https://doi.org/10.1016/j.jallcom.2005.01.077

28. A.Meijerink, G.Blasse, J. Lumin., 47, 1 (1990).
https://doi.org/10.1016/0022-2313(90)90052-D

Current number: