Funct. Mater. 2023; 30 (3): 332-337.

doi:https://doi.org/10.15407/fm30.03.332

Refractive index and optical dielectric function of CdTe0.9Se0.1 thin film produced by quasi-closed sublimation

A. Kashuba1, H. Ilchuk1, I. Semkiv1, I. Kuno2, N. Pokladok1, N. Ukrainets1

1Department of General Physics, Lviv Polytechnic National University, 12 S. Bandera Str., 79013 Lviv, Ukraine
2Department of Optoelectronics and Information Technologies, Ivan Franko National University of Lviv, 107 Tarnavskyi Str., 79017 Lviv, Ukraine

Abstract: 

Optical constants, dispersion and oscillator parameters of CdTe0.9Se0.1 thin film deposited onto quartz substrates by the quasi close-space sublimation method is studied. The study of optical functions is performed on the basis of the experimentally measured transmission spectrum by the Swanepoel method. The spectral behavior of optical functions, such as refractive index and dielectric functions is established. The refractive index was extrapolated by the Cauchy and Sellmeier dispersion relationships over the spectral range from 900 to 2500 nm. The dispersion of the refractive index is discussed in terms of the Wemple and Di Domenico single oscillator model. The spectral behavior of optical dielectric functions was studied in the framework of the Drude free electron model. For a thin CdTe0.9Se0.1 film, the optical mobility, optical resistance, relaxation time, plasma frequency, and carrier concentration are determined for the first time.

Keywords: 
thin films, refractive index, optical dielectric function, relaxation time, optical mobility.
References: 

1. N.Romeo, A.Bosio, R.Tedeschi et al., Mater. Chem. Phys., 66, 201 (2000).
https://doi.org/10.1016/S0254-0584(00)00316-3

2. N.Romeo, A.Bosio, V.Canevari et al., Sol. Energy., 77, 795 (2014).
https://doi.org/10.1016/j.solener.2004.07.011

3. A.Bosio, N.Romeo, S.Mazzamuto et al., Growth Charact. Mater., 52, 247 (2006).
https://doi.org/10.1016/j.pcrysgrow.2006.09.001

4. B.B.Dumre, N.J.Szymanski, V.Adhikari et al., Sol. Energy, 194, 742 (2019).
https://doi.org/10.1016/j.solener.2019.10.091

5. T.Ablekim, J.N.Duenow, X.Zheng et al., ACS Energy Lett., 5, 892 (2020).
https://doi.org/10.1021/acsenergylett.9b02836

6. M.A.Russak, C.Creter, J. Electrochem. Soc., 131, 556 (1984).
https://doi.org/10.1149/1.2115626

7. M.El-Nahass, M.M.Sallam, M.A.Afifi et al., Mater. Res. Bull., 42, 371 (2007).
https://doi.org/10.1016/j.materresbull.2006.05.022

8. M.Lingg, A.Spescha, S.G.Haass et al., Sci. Technol. Adv. Mater., 19, 683 (2018).
https://doi.org/10.1080/14686996.2018.1497403

9. D.E.Swanson, J.R.Sites, W.S.Sampath, Sol. Energy Mater. Sol. Cells, 159, 389 (2017).
https://doi.org/10.1016/j.solmat.2016.09.025

10. N.Muthukumarasamy, R.Balasundaraprabhu, S.Jayakumar et al., Phys. Stat. Sol. (A), 201, 2312 (2004).
https://doi.org/10.1002/pssa.200406841

11. F.Amir, K.Clark, E.Maldonado et al., J. Cryst. Growth, 310, 1081 (2008).
https://doi.org/10.1016/j.jcrysgro.2007.12.055

12. R.Islam, H.Banerjee, D.Rao, Thin Solid Films, 266, 215 (1995).
https://doi.org/10.1016/0040-6090(96)80027-7

13. M.Bouroushian, Z.Loizos, N.Spyrellis et al., Thin Solid Films, 229, 101 (1993).
https://doi.org/10.1016/0040-6090(93)90415-L

14. J.D.Poplawsky, W.Guo, N.Paudel et al., Nat. Commun., 7, 12537 (2016).
https://doi.org/10.1038/ncomms12537

15. L.Kumar, B.P.Singh, A.Misra et al., Phys. B Condens. Matter., 363, 102 (2005).
https://doi.org/10.1016/j.physb.2005.03.008

16. R.Petrus, H.Ilchuk, A.Kashuba et al., Molecular Crystals and Liquid Crystals, 717, 128 (2021).
https://doi.org/10.1080/15421406.2020.1860538

17. A.I.Kashuba, H.A.Ilchuk, R.Y.Petrus et al., Applied Nanoscience (Switzerland), 12, 335 (2022).
https://doi.org/10.1007/s13204-020-01635-0

18. H.Ilchuk, E.Zmiiovska, R.Petrus et al., J. Nano- and Electron. Phys., 12, 01027 (2020).
https://doi.org/10.21272/jnep.12(1).01027

19. V.Kosyak, A.Opanasyuk, P.M.Bukivskij et al., J. Cryst. Growth., 312, 1726 (2010).
https://doi.org/10.1016/j.jcrysgro.2010.02.034

20. Y.Jin, B.Song, Z.Jia et al., Optics Express, 25, 440 (2017).
https://doi.org/10.1364/OE.25.000440

21. R.Petrus, H.Ilchuk, A.Kashuba et al., Functional Materials, 27, 342 (2020).
https://doi.org/10.15407/fm27.02.342

22. H.A.Ilchuk, A.I.Kashuba, R.Y.Petrus et al., Physics and Chemistry of Solid State, 21, 57 (2020).
https://doi.org/10.15330/pcss.21.1.57-60

23. J.S.Gonzalez, A.D.Parralejo, A.L.Ortiz et al., Appl. Surf. Sci., 252, 6013 (2006).
https://doi.org/10.1016/j.apsusc.2005.11.009

24. M.Born, E.Wolf, Principles of Optics. Ch. II. Pergamon Press, Oxford (1975).

25. A.Ashour, N.El-Kadry, S.A.Mahmoud, Thin Solid Films, 269, 117 (1995).
https://doi.org/10.1016/0040-6090(95)06868-6

26. S.H.Wemple, M.DiDomenico, Phys. Rev. B., 3, 1338 (1971).
https://doi.org/10.1103/PhysRevB.3.1338

27. Y.Caglar, S.Ilican, M.Caglar, Eur. Phys. J. B, 58, 251 (2007).
https://doi.org/10.1140/epjb/e2007-00227-y

28. A.Kocyigit, M.O.Erdal, M.Yildirim, Zeitschrift fur Naturforschung, 74, 1 (2019).
https://doi.org/10.1515/znb-2018-0221

29. R.Swanepoel, J. Phys. E, Sci. Instrum., 16, 1214 (1983).
https://doi.org/10.1088/0022-3735/16/12/023

30. H.A.Ilchuk, B.Andriyevsky, O.S.Kushnir et al., Ukr. J. Phys. Opt., 22, 101 (2021).
https://doi.org/10.3116/16091833/22/2/101/2021

31. A.Y.Fasasi, E.Osagie, D.Pelemo et al., Am. J. Mater. Synth. Process., 3, 12 (2018).

32. A.M.Alsaad, A.A.Ahmad, Q.M.Al-Bataineh et al., Materials, 13, 1737 (2020).
https://doi.org/10.3390/ma13071737

Current number: