Funct. Mater. 2023; 30 (3): 338-343.

doi:https://doi.org/10.15407/fm30.03.338

Aluminum doped zinc oxide thin films with lower activation energy prepared by radio frequency magnetron sputtering

Sana Ullah

Institute of Mechanical and Manufacturing Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan

Abstract: 

Thin films of aluminum-doped zinc oxide (AZO) with reduced activation energy have been obtained and studied. Thin aluminum-doped zinc oxide films were grown by RF magnetron sputtering on silicon and glass substrates with different oxygen content in working gases (Ar + O2). It was found that the activation energy of aluminum-doped zinc oxide films is about 0.03 eV and varies with the oxygen content.

Keywords: 
aluminium zinc oxide, zinc oxide, n-type materials, activation energy, doping, magnetron sputtering.
References: 

1. U.Ozgur, D.Hofstetter, H.Morkoc, Proceedings of IEEE, 98, 1255 (2010).
https://doi.org/10.1109/JPROC.2010.2044550

2. Xinglai Zhang, Jing Li, Wenjin Yang et al., ACS Appl. Mater. Interfaces, 11, 24459 (2019).
https://doi.org/10.1021/acsami.9b07423

3. Junqing Zhao, Shijie Xie, Shenghao Han et al., Synthetic Metals, 114, 251 (2000).
https://doi.org/10.1016/S0379-6779(00)00237-X

4. A.R.Gentle, S.D.Yambem, P.L.Burn et al., J. Applied Physics, 119, 245501 (2016).
https://doi.org/10.1063/1.4954689

5. U.Ozgur, Ya.I.Alivov, C.Liu et al., J. Applied Physics, 98, 041301 (2005).
https://doi.org/10.1063/1.1992666

6. Hasan Eskalen, Yusuf Kavun, Suleyman Kerli et al., Optical Materials, 105, 109871 (2020).
https://doi.org/10.1016/j.optmat.2020.109871

7. Yajing Liu, Qingyu Hou, Shulin Sha et al., Vacuum, 17, 109127 (2020).
https://doi.org/10.1016/j.vacuum.2019.109127

8. C.Klingshirn, Chem. Phys. Chem., 8, 782 (2007).
https://doi.org/10.1002/cphc.200700002

9. B.Kucukgok, B.Wang, A.G.Melton et al., Phys. Status Solidi C, 11, 894 (2014).
https://doi.org/10.1002/pssc.201300538

10. M.Husham, Mohd Nizar Hamidon, S.Paiman et al., Sensors and Actuators A 263, 166 (2017).
https://doi.org/10.1016/j.sna.2017.05.041

11. Ying-Jie Lu, Zhi-Feng Shi, Chong-Xin Shan et al., Chin. Phys. B, 26, 047703 (2017).
https://doi.org/10.1088/1674-1056/26/4/047703

12. Yangyang Zhao, Yicong Chen, Guofu Zhang et al., Nanomaterials, 11, 240 (2021).
https://doi.org/10.3390/nano11010240

13. Sara Marouf, Abdelkrim Beniaiche, Kasra Kardarian et al., J. Anal. Appl. Pyrolysis, 127, 299 (2017).
https://doi.org/10.1016/j.jaap.2017.07.021

14. Sana Ullah, Fabio De Matteis, Ivan Davoli, J. Electronic Materials, 46, 6609 (2017).
https://doi.org/10.1007/s11664-017-5704-5

15. Sana Ullah, Rita Branquinho, Ana Santa et al., Semicond. Sci. Technol., 33, 105004 (2018).
https://doi.org/10.1088/1361-6641/aad5cc

16. J.C.A.Queiroz, M.Naeem, J.B.A.Filho, M.S. et al., J. Electronic Materials, 50, 687 (2021).
https://doi.org/10.1007/s11664-020-08410-5

17. Sana Ullah, Rita Branquinho, Tiago Mateus et al., Sustainability, 12, 10423 (2020).
https://doi.org/10.3390/su122410423

18. H.T.Cao, C.Sun, Z.L.Pei et al., J. Materials Science: Materials in Electronics, 15, 169 (2004).
https://doi.org/10.1023/B:JMSE.0000011357.32981.47

19. Wolfgang H. Hirschwald, Acc. Chem. Res., 18, 228 (1985).
https://doi.org/10.1021/ar00116a001

20. R.M.Pshenychnyi, O.V.Lysenko, T.V.Pavlenko et al., Functional Materials, 30, 18 (2023).
https:// doi.org/10.15407/fm30.01.18

21. A.C.Badgujar, Brijesh Singh Yadav, Golu Kumar Jha et al., ACS Omega, 7, 14203 (2022).
https://doi.org/10.1021/acsomega.2c00830

22. Yupeng Xie, Xinhai Li, XianDe Wang, Functional Materials, 27, 337 (2020).
https:// doi.org/10.15407/fm27.02.337

23. Eugen Stamate, Surface & Coatings Technology, 402, 126306 (2020).
https://doi.org/10.1016/j.surfcoat.2020.126306

24. Naveen Kumar, Ashraful Haider Chowdhury, Behzad Bahrami et al., Thin Solid Films, 700, 137916 (2020).
https://doi.org/10.1016/j.tsf.2020.137916

25. Eugen Stamate, Nanomaterials, 10, 14 (2020).
https://doi.org/10.3390/nano10010014

26. Le Kong, Jinxiang Deng, Liang Chen et al., Functional Materials, 24, 541 (2017).
https://doi.org/10.15407/fm24.04.541

27. T.O.Berestok, D.I.Kurbatov, N.M.Opanasyuk et al., Functional Materials, 22, 93 (2015).
https://doi.org/10.15407/fm22.01.093

28. E.I.Getman, T.M.Savankova, A.V.Ignatov et al., Functional Materials, 21, 247 (2014).
https://doi.org/10.15407/fm21.03.247

29. R.S.Khaleel, M.Sh.Hashim, S.Gh.Majeed, Journal of Science, 49, 1 (2022).

30. A.F.Kohan, G.Ceder, D.Morgan et al., Physical Review, 61, 15019 (2000).
https://doi.org/10.1103/PhysRevB.61.15019

31. S.Tuzemen, Gang Xiong, John Wilkinson et al., Physics B, 308-310, 1197 (2001).
https://doi.org/10.1016/S0921-4526(01)00940-1

32. D.C.Look, C.Coskun, B.Claflin et al., Physica B, 340-342, 32 (2003).
https://doi.org/10.1016/j.physb.2003.09.188

33. Takashi Tsuji, Mitsuji Hirohashi, Applied Surface Science, 157, 47 (2000).
https://doi.org/10.1016/S0169-4332(99)00517-6

34. Yasuhiro Igasaki, Michiaki Ishikawa, Goro Shimaoka, Applied Surface Science, 33-34, 926 (1988).
https://doi.org/10.1016/0169-4332(88)90400-X

Current number: