Funct. Mater. 2023; 30 (3): 371-376.

doi:https://doi.org/10.15407/fm30.03.371

Multi-element vacuum-arc coatings of the TiZrHfNbTaVN system

H.Kniazieva (Postelnyk), S.Kniaziev, V.Subbotina

National Technical University Kharkiv Polytechnical Institute, 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

The research considers the influence of constant (Ub = -45...-200 V) and pulsed (Uip = -800...-1200 V) displacement potential on the composition, structure and mechanical properties of multi-element vacuum-arc coatings of the TiZrHfNbTaVN systemX-ray diffraction analysis shows the formation of a two-phase state, which consists of an fcc crystal lattice of the NaCl structure type and a small amount of the bcc phase, which may be due to the presence of a droplet component. The use of an additional pulsed potential does not lead to an improvement in surface quality and an increase in mechanical properties. The maximum hardness of 52 GPa was obtained at a constant displacement potential of -200 V.

Keywords: 
multi-element coatings, nanostructure, vacuum arc method, displacement potential.
References: 

1. D.B.Hlushkova, V.A.Bagrov, S.V.Demchenko et al., Problems of Atomic Science and Technology, 4, 125 (2022).
https://doi.org/10.46813/2022-140-125

2. B.Trembach, O.Balenko, V.Davydov et al., IEEE 4th International Conference on Modern Electrical and Energy System (MEES) (2022), p.01.

3. M.G.Poletti, L.Battezzati, Acta Materialia, 75, 297 (2014).
https://doi.org/10.1016/j.actamat.2014.04.033

4. F.Tian, L.K.Varga, N.Chen et al., Intermetallics, 58, 1 (2015).
https://doi.org/10.1016/j.intermet.2014.10.010

5. J.Zaddach, C.Niu, C.C.Koch, D.L.Irving, JOM, 65, 1780 (2013).
https://doi.org/10.1007/s11837-013-0771-4

6. G.Salishchev, M.Tikhonovsky, D.Shaysultanov et al., Journal of Alloys and Compounds, 591, 11 (2014).
https://doi.org/10.1016/j.jallcom.2013.12.210

7. B.Gludovatz, A.Hohenwarter, D.Catoor et al., Science, 345, 1153 (2014).
https://doi.org/10.1126/science.1254581

8. A.Gali, E.George, Intermetallics, 39, 74 (2013).
https://doi.org/10.1016/j.intermet.2013.03.018

9. F.Otto, Y.Yang, H.Bei, E.George, Acta Materialia, 61, 2628 (2013).
https://doi.org/10.1016/j.actamat.2013.01.042

10. O.V.Sobol', A.A.Andreev, V.F.Gorban' et al., Journal of Nano- and Electronic Physics, 10, 05046 (2018).
https://doi.org/10.21272/jnep.10(5).05046

11. S.Gorsse, M.H.Nguyen, O.N.Senkov, D.B.Miracle, Data in Brief, 21, 2664 (2018).
https://doi.org/10.1016/j.dib.2018.11.111

12. O.V.Sobol', A.A.Postelnyk, R.P.Mygushchenko et al., Journal of Nano- and Electronic Physics, 10, 02035 (2018).
https://doi.org/10.21272/jnep.10(2).02035

13. Y.Zhang, T.T.Zuo, Z.Tang et al., Progress in Materials Science, 61, 1 (2014).
https://doi.org/10.1016/j.pmatsci.2013.10.001

14. http://www.icdd.com

15. A.S.Rusakov, Rentgenografiya Metallov, Atomizdat, Moscow (1977).

16. G.Yu.Yushkov, A.Anders, E.M.Oks, I.G.Brown, Journal of Applied Physics, 88, 5618 (2000).
https://doi.org/10.1063/1.1321789

Current number: