Funct. Mater. 2023; 30 (3): 377-386.

doi:https://doi.org/10.15407/fm30.03.377

Preparation and properties of a lignocellulose nanocomposite material

Xingang Wang1, Zhongbo Liu2

1Yulin Normal University, Guangxi, 537000 Yulin, China
2College of Railway Engineering, Jilin Railway Technology College, Jilin, 130000 Changchun, China

Abstract: 

In this work, the Lignocellulose (LCS) matrix was intercalated into the nanoscale lamellar structure of montmorillonite (MTN) by the solution intercalation method, which completely destroyed the lamellar structure of MTN and made it uniformly dispersed in the LCS matrix in the form of nano-lamellar units, thus achieving an organic combination of LCS and MTN at the nanoscale and finally obtaining LCS/MTN nanocomposites. The results show that the XRD pattern of LCS/MTN has no obvious changes compared to LCS feedstock, indicating that oxalic acid hydrolysis did not destroy or alter the inherent crystalline structure of cellulose. LCS/MTN prepared at 50 wt% oxalic acid has a higher carboxyl content. This shows that the carboxyl content is not the main adverse factor affecting the thermal stability of LKS/MTH. The isotherm of dye adsorption by nanocomposites corresponds to the Langmuir isotherm, and all of them are less than 1, which corresponds to preferential adsorption. It can be used as an adsorbent to purify methylene blue dye in printing and dyeing wastewater.

Keywords: 
lignocellulose, nanocomposite, montmorillonite.
References: 

1. Z.Wang, X.Shen, Y.Yan et al., Applied Surface Science, 450, 30 (2018).
https://doi.org/10.1016/j.apsusc.2018.04.180

2. X.Xu, J.Gan, Y.Huang et al., Functional Materials Letters, 15, 1 (2022).

3. K.Li, Y.Wang, X.Li et al., Chemosphere, 302, 9 (2022).

4. M.L.Testa, M.L.Tummino, Catalysts, 11, 1 (2021).
https://doi.org/10.3390/catal11010125

5. N.Tippktter, J.Roth, Chemie Ingenieur Technik, 92, 11 (2020).
https://doi.org/10.1002/cite.202070105

6. L.Peng, X.Huangfu, Y.Liu et al., Renewable Energy, 193, 6 (2022).
https://doi.org/10.1016/j.renene.2022.05.018

7. A.S.Borisova, E.V.Eneyskaya, S.Jana et al., Biotechnology for Biofuels, 11, 1 (2018).
https://doi.org/10.1186/s13068-017-1006-7

8. J.Li, D.J.W.Lawton, G.G.Sacripante et al., Industrial Engineering Chemistry Research, 60, 38 (2021).

9. M.I.Santek, M.Grubisic, M.G.Perecinec et al., Process Biochemistry, 109, 10 (2021).
https://doi.org/10.1016/j.procbio.2021.06.017

10. B.Pang, Z.Sun, L.Wang et al., Chemical Engineering Journal, 95, 1 (2021).

11. C.A.Echeverria, F.Pahlevani, V.Sahajwalla, J. Cleaner Production, 258, 54 (2020).
https://doi.org/10.1016/j.jclepro.2020.120730

12. J.K.Han, A.Madhusudhan, R.Bandi et al., Bioresources, 15, 2 (2020).

13. M.Kessler, R.Ahorsu, F.M.Medina, Chemie Ingenieur Technik, 92, 9 (2020).
https://doi.org/10.1002/cite.202055127

14. K.Kepa, C.M.Chaleat, N.Amiralian et al., Cellulose, 26, 11 (2020).
https://doi.org/10.1007/s10570-019-02567-x

15. Y.Ding, B.Shan, X.Cao et al., J. Cleaner Production, 288, 3 (2020).
https://doi.org/10.1016/j.jclepro.2020.125586

16. Y.Zhou, J.Yang, C.Luo et al., Bioresources, 14, 1 (2019).
https://doi.org/10.15376/biores.14.1.1-2

17. A.H.Aly, H.A.Elsayed, C.Malek, Optica Applicata, 48, 1 (2018).

18. J.Li, L.Xu, J.He et al., New J. Chemistry, 10, 1039 (2018).

19. C.Y.Shao, M.Wang, H.L.Chang et al., Chem. Mater., 30, 9 (2018).
https://doi.org/10.1021/acs.chemmater.8b01172

20. S.A.Malyshev, O.A.Shlyakhtin, G.N.Mazo et al., Functional Materials Letters, 10, 06 (2018).
https://doi.org/10.1142/S1793604717500710

21. L.Fotouhi, P.S.Dorraji, Y.S.S.Keshmiri et al., Electrochemical Society, 165, 5 (2018).
https://doi.org/10.1149/2.0541805jes

22. B.D.Chen, T.Zhou, Z.L.Wang et al., Nano Research, 11, 6 (2018).
https://doi.org/10.1007/s12274-017-1716-y

23. L.Yamei, H.Caili, J.Tifeng et al., Nanomaterials, 8, 1 (2018).

24. N.Shandilya, O.L.Bihan, M.Morgeneyer, J. Nanomaterials, 2014, 1 (2018). .
https://doi.org/10.1155/2014/289108

25. B.Jiang, L.Li, Z.Bian et al., Intern. J. Hydrogen Energy, 43, 29 (2018).
https://doi.org/10.1016/j.ijhydene.2018.05.114

26. Z.Y.Ding, F.F.Wen, J.L.Wang et al., Green Chem., 20, 6 (2018).
https://doi.org/10.1039/C7GC03218H

27. W.Cui, T.Tobimatsu, Saucet et al., New Phytol., 218, 2 (2018).
https://doi.org/10.1111/nph.15033

Current number: