Funct. Mater. 2023; 30 (3): 403-406.

doi:https://doi.org/10.15407/fm30.03.403

The dependence of the abrasive wear resistance of ultra-high-molecular-weight polyethylene on the content of mineral fillers with needle-like structure

A.-M.V.Tomina, O.V.Yeromenko

Dniprovsk State Technical University, 2 Dniprobudivska Str., 51918 Kamyanske, Ukraine

Abstract: 

The paper studies the influence of the percentage of basalt fiber and wollastonite on the abrasion resistance index of ultra-high-molecular-weight polyethylene by hard-fixed abrasive particles. Studies have shown that adding basalt fiber (10-50 mass.%) or wollastonite (10-50 mass.%) to ultra-high-molecular-weight polyethylene reduces abrasive wear index by 35 %. The improvement of this indicator occurs due to mechanical destruction of the surface. It is confirmed by the study of the morphology of the friction surfaces (roughness decreases 1.5 times).

Keywords: 
ultra-high-molecular-weight polyethylene, basalt fiber, wollastonite, abrasive wear index, abrasive particles.@PAR =
References: 

1. http://www.researchinchina.com/Htmls/Report/2019/11569.html (Last visited January 20 2023).

2. M.V.Yurzhenko, Scientific Bulletin of NLTU of Ukraine, 29, 2 (2019).

3. Alessandro Bistolfi, Fortunato Giustra, Francesco Bosco et al., J. Orthopaedics, 25 (2021).
https://doi.org/10.1016/j.jor.2021.04.004

4. Tian Ma, Tao Zhang, Peng Gang Gao, JianChun Zhang, Chinese Science Bulletin, 58 (2013).

5. M.Sufyan, M.Hussain, H.Ahmad et al., Biomedical Physics & Engineering Express, 5 (2019).
https://doi.org/10.1088/2057-1976/ab0e94

6. J.Baena, J.Wu, Z.Peng, Lubricants, 3 (2015).
https://doi.org/10.3390/lubricants3020413

7. A.V.Maksimkin, S.D.Kaloshkin, M.S.Kaloshkina et al., J. Alloys and Compounds, 536 (2012).
https://doi.org/10.1016/j.jallcom.2012.01.151

8. Debrupa Lahiriab, Francois Hecac, Mikael Thiesseac et al., J. Tribology International, 70 (2014).

9. Hongqiu Wang, Jiayou Quan, Junrong Yu et al., J. Applied Polymer Science, 138, 29 (2021).

10. Xavier Sanchez-Sanchezab, Alex Elias-Zunigaa, Marcelo Hernandez-Avila, Ultrasonics Sonochemistry, 44 (2018).
https://doi.org/10.1016/j.ultsonch.2018.02.042

11. G.Vikas, M.Sudheer, American Journal of Materials Science, 5, 7 (2017).

12. Yu.Ya.Melnyk, Yu.V.Klim, A.M.Shibanova et al., Scientific Bulletin of National Technical University of Ukraine, 27, 3 (2017).

13. O.V.Yeromenko, A.-M.V.Tomina, Ye.A.Yeriomina, O.V.Chernyavskyi, J. Functional Materials, 30, 90 (2023).
https://doi.org/10.15407/fm30.01.90

14. A.I.Burya, Y.A.Yeriomina, J. Friction and Wear, 37, 2 (2016).
https://doi.org/10.3103/S1068366616020033

15. O.I.Burya, A.-M.V.Tomina, J. Functional Materials, 26, 3 (2019).
https://doi.org/10.15407/fm26.03.525

Current number: