Funct. Mater. 2023; 30 (3): 413-423.

doi:https://doi.org/10.15407/fm30.03.413

Mutual impact of alternative mechanisms of a dopant embedding into an ordered medium: a case of gramicidin S in model lipid membranes

R.Ye.Brodskii1, O.V.Vashchenko2

1Institute for Single Crystals, National Academy of Science of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2Institute for Scintillation Materials, National Academy of Science of Ukraine, 60 Nauky Ave., 61072 Kharkiv

Abstract: 

Governing mechanisms of dopants interactions with host media are of peculiar importance in the light of development of novel materials. Lipid structures, including bilayer membranes, are vivid examples of ordered media with plenty ways of practical usage. In this work, L-α-dipalmitoylphosphatidylcholine (DPPC) membrane doped with an antimicrobial peptide gramicidin S (GS) is under consideration. Due to GS ability to form associates inside the membrane, this is a case when the same dopant behaves like two different ones, whereby lipid shells around GS monomers and associates porly mix with one another and lipid domains of two different types arise. Data of differential scanning calorimetry (DSC) were collected reflecting phase transitions in the system. Some unusual GS features were observed by means of DSC. In particular, a power-law concentration dependence of phase transition temperature was obtained for monomer-containing domains, where the exponent is higher than 1, which is rather typical for polymolecular sorption. We proposed a phenomenological model based on mutual impact of alternative mechanisms of 'dopant - medium' interactions. Within the framework of the model, the system DPPC + GS is considered as two-dimension nano-emulsion composed of two different types of domains where processes on the domains boundaries, including generation of free volume, affecting significantly the system properties. The model allows us to explain quite well a number of membranotropic features of GS, including its antimicrobial action, and could be useful for interpretation and prediction of GS effects in various model and cell membranes.

Keywords: 
model lipid membrane, gramicidin S, phenomenological model, mechanisms of dopants action, mutual impact, differential scanning calorimetry.
References: 

1. J.Li, J.-J.Koh, S.Liu, R.Lakshminarayanan et al., Front. Neurosci., 11, 73 (2017).

2. G.Gause, M.Brazhnikova, Nature, 154, 703 (1944).
https://doi.org/10.1038/154703a0

3. H.Yonezawa, K.Okamoto, K.Tomokiyo et al., J. Biochem., 100, 1253 (1986).
https://doi.org/10.1093/oxfordjournals.jbchem.a121831

4. S.Afonin, U.H.N.Durr, P.Wadhwani et al., Top. Curr. Chem., 273, 139 (2008).
https://doi.org/10.1007/128_2007_20

5. K.Lohner, S.E.Blondelle, Comb. Chem. High Throughput Screen., 8, 241 (2005).
https://doi.org/10.2174/1386207053764576

6. N.A.Kasian, O.V.Vashchenko, L.V.Budianska et al., Biochim. Biophys. Acta-Biomembr., 1861, 123 (2019).
https://doi.org/10.1016/j.bbamem.2018.08.007

7. L.H.Kondejewski, S.W.Farmer, D.S.Wishart et al., J. Biol. Chem., 271, 25261 (1986).
https://doi.org/10.1074/jbc.271.41.25261

8. T.Kim, K.I.Lee, P.Morris et al., Biophys. J., 102, 1551 (2012).
https://doi.org/10.1016/j.bpj.2012.03.014

9. M.Wenzel, M.Rautenbach, J.A.Vosloo et al., mBio, 9, e00802-18 (2018).
https://doi.org/10.1128/mBio.00802-18

10. M.Ashrafuzzaman, O.S.Andersen, R.N.McElhaney et al., Biochim. Biophys. Acta-Biomembr., 1778, 2814 (2008).
https://doi.org/10.1016/j.bbamem.2008.08.017

11. M.Ashrafuzzaman, Membranes, 11, 247 (2021).
https://doi.org/10.3390/membranes11040247

12. T.Abraham, E.J.Prenner, R.N.A.H.Lewis et al., Biochim. Biophys. Acta-Biomembr., 1838, 1420 (2014).
https://doi.org/10.1016/j.bbamem.2013.12.019

13. O.Babii, S.Afonin, A.Yu.Ishchenko et al., J. Med. Chem., 61, 10793 (2018).
https://doi.org/10.1021/acs.jmedchem.8b01428

14. S.Reiber, E.Strandberg, T.Steinbrecher et al., Biophys. J., 106, 2385 (2014).
https://doi.org/10.1016/j.bpj.2014.04.020

15. E.J.Prenner, R.N.A.H.Lewis, L.H.Kondejewski et al., Biochim. Biophys. Acta-Biomembr., 1417, 211 (1999).
https://doi.org/10.1016/S0005-2736(99)00004-8

16. S.L.Grage, S.Afonin, S.Kara et al., Front. Cell Dev. Biol., 4, 65 (2016).
https://doi.org/10.3389/fcell.2016.00065

17. I.P.Sugar, A.P.Bonanno, P.L.-G.Chong, Int. J. Mol. Sci., 19, 3690 (2018).
https://doi.org/10.3390/ijms19113690

18. M.Jelokhani-Niaraki, R.S.Hodges, J.E.Meissner et al., Biophys. J., 95, 3306 (2008).
https://doi.org/10.1529/biophysj.108.137471

19. C.McInnes, L.H.Kondejewski, R.S.Hodges et al., J. Biol. Chem., 275, 14287 (2000).
https://doi.org/10.1074/jbc.275.19.14287

20. QtiPlot - Data Analysis and Scientific Visualisation [electronic resource]. URL: https://www.qtiplot.com.

21. H.M.F.Freundlich, J. Phys. Chem. A., 57, 385 (1906).

22. O.V.Vashchenko, N.A.Kasian, L.V.Budianska et al., J. Mol. Liq., 275, 173 (2019).
https://doi.org/10.1016/j.molliq.2018.11.053

23. R.Krivanek, L.Okoro, R.Winter, Biophys. J., 94, 3538 (2008).
https://doi.org/10.1529/biophysj.107.122549

24. G.W.Feigenson, Biochim. Biophys. Acta, 1788, 47 (2009).
https://doi.org/10.1016/j.bbamem.2008.08.014

25. W.Diakowski, L.Ozimek, E.Bielska, S.Bem et al., Biochim. Biophys. Acta, 1758, 4 (2006).
https://doi.org/10.1016/j.bbamem.2005.11.009

26. Chemdraw 3d free download social advice [electronic resourse]: URL: https://www.softadvice.informer.com/Chemdraw_3d_Free_Download.html.

27. A.O.Sadchenko, O.V.Vashchenko, A.Yu.Puhovkin et al., Biophysics, 62, 570 (2017).
https://doi.org/10.1134/S0006350917040194

28. K.N.Belosludtsev, N.V.Penkov, K.S.Tenkov, Chem. -Biol. Interact., 299, 8 (2019).
https://doi.org/10.1016/j.cbi.2018.11.017

29. W.K.Subczynski, M.Pasenkiewicz-Gierula, J.Widomska et al., Cell Biochem. Biophys., 75, 369 (2017).
https://doi.org/10.1007/s12013-017-0792-7

30. R.N.McElhaney, Chem. Phys. Lipids, 30, 229 (1982).
https://doi.org/10.1016/0009-3084(82)90053-6

31. G.Neunert, J.Tomaszewska-Gras, M.Gauza-Wlodarczyk et al., Appl. Sci., 13, 6219 (2023).
https://doi.org/10.3390/app13106219

32. R.Ye.Brodskii, O.V.Vashchenko, Func. Mater., 28, 525 (2021).
https://doi.org/10.15407/fm28.03.525

33. M.S.Giammarinaro, S.Micciancio, Mol. Cryst. Liq. Cryst., 76, 35 (1981).
https://doi.org/10.1080/00268948108074674

34. M.Ricci, R.Oliva, P.Del Vecchio et al., Biochim. Biophys. Acta, 1858, 3024 (2016).
https://doi.org/10.1016/j.bbamem.2016.09.012

35. G.S.S.Ferreira, D.M.Perigo, M.J.Politi et al., Photochem. Photobiol., 63, 755 (1996).
https://doi.org/10.1111/j.1751-1097.1996.tb09627.x

36. N.Toyran, F.Severcan, Spectroscopy, 16, 399 (2002).
https://doi.org/10.1155/2002/381692

37. T.Heimburg, Biochim. Biophys. Acta., 1415, 147 (1998).
https://doi.org/10.1016/S0005-2736(98)00189-8

38. N.A.Kasian, O.V.Vashchenko, L.V.Budianska et al., J. Therm. Anal. Calorim., 136, 795 (2019).
https://doi.org/10.1007/s10973-018-7695-8

Current number: