Funct. Mater. 2023; 30 (3): 424-430.

doi:https://doi.org/10.15407/fm30.03.424

Polishing of polystyrene scintillators

Yu.D. Filatov1, A.Yu. Boyarintsev2, V.I. Sidorko1, S.V. Kovalev1, O.V. Kolesnikov2

1Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine, 04074 Kyiv, Ukraine
2Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 61072 Kharkiv, Ukraine

Abstract: 

As a result of research in regularities of influence of material’s physical properties and the dispersion system on the polishing performance and roughness of polished surfaces of polystyrene-based plastic scintillators, it was found that the formation of slurry particles of the treated material is a consequence of the Forster resonant energy transfer that occurs in an open resonator formed by two parallel surfaces of the treated material and lapping pad, between the energy levels of polishing powder particles and treated material in the four-mode regime. It is shown that the material removal rate is determined by the total coefficient of volumetric wear, the total lifetime of treated surface clusters in an excited state and the resulting resonator quality factor at all possible frequencies. Roughness of polished surface depends on the spectral resolution and the resonator quality factor and is characterised by a superposition of the parameters Ra, Rq and Rmax, which are specific to each mode. It is shown that polishing of polystyrene-based plastic scintillators using a dispersion system of micro- and nanoparticles allows to reach the values of material removal rate and the roughness of polished surfaces, which satisfy the requirements for the polishing process of optical surfaces.

Keywords: 
polishing, Forster resonance energy transfer (FRET), material removal rate (MRR), roughness.
References: 

1. Yu.D.Filatov, J. Superhard Mater. 42(1), 30 (2020).
https://doi.org/10.3103/S1063457620010037

2. Yu.D.Filatov, V.I.Sidorko, S.V.Kovalev et al., J. Superhard Mater. 43(1), 65 (2021).
https://doi.org/10.3103/S1063457621010032

3. O.Yu.Filatov, V.I.Sidorko, S.V.Kovalev et al., Functional Materials, 23(1), 104 (2016).
https://doi.org/10.15407/fm23.01.104

4. N.Sato, Y.Aoyama, J.Yamanaka et al., Sci. Reports, 7(6099), 1 (2017).
https://doi.org/10.1038/s41598-017-06257-1

5. G.Lin, D.Guo, G.Xie et al., Colloids Surf. A: Physicochem. Eng. Aspects., 482, 656 (2015).
https://doi.org/10.1016/j.colsurfa.2015.05.059

6. G.A.Jones, D.S.Bradshaw, Front. Phys. 7(100), 1 (2019).
https://doi.org/10.3389/fphy.2019.00100

7. A.Singldinger, M.Gramlich, C.Gruber et al., ACS Energy Lett., 5, 1380 (2020).
https://doi.org/10.1021/acsenergylett.0c00471

8. Ch.Abeywickrama, M.Premaratne, D.L.Andrews, Proc. SPIE, 113451B, (2020).

9. A.N.Poddubny, A.V.Rodina, J. Exp. Theor. Phys. 122(3), 531 (2016).
https://doi.org/10.1134/S1063776116030092

10. G.A.Jones, D.S.Bradshaw, Front. Phys. 7, 100 (2019).
https://doi.org/10.3389/fphy.2019.00100

11. L.C.Cristian, J.Zubin, Optics Express. 26(15), 19371 (2018).
https://doi.org/10.1364/OE.26.019371

12. F.Gordon, S.Elcoroaristizabal, A.G.Ryder, Biochimica et Biophysica Acta (BBA)-General Subjects. 1865(2), 129770 (2021).
https://doi.org/10.1016/j.bbagen.2020.129770

13. M.Du, L.A.Martinez-Martinez, R.F.Ribeiro et al., Chem. Sci. 9, 6659 (2018).

14. X.Zhong, T.Chervy, L.Zhang et al., Angew. Chem. Int. 56(31), 9034 (2017).
https://doi.org/10.1002/anie.201703539

15. D.Dovzhenko, M.Lednev, K.Mochalov et al., Chem. Sci. 12, 12794 (2021).
https://doi.org/10.1039/D1SC02026A

16. I.Nabiev, PhysBioSymp. 2019. J. Physics: Conf. Ser. 2058, 012001 (2021).
https://doi.org/10.1088/1742-6596/2058/1/012001

17. Yu.D.Filatov, V.I.Sidorko, A.Y.Boyarintsev et al., J. Superhard Mater. 44(2), 117 (2022).
https://doi.org/10.3103/S1063457622020058

18. Yu.D.Filatov, V.I.Sidorko, A.Y.Boyarintsev et al., J. Superhard Mater. 44(5), 358 (2022).
https://doi.org/10.3103/S1063457622050021

19. Yu.D.Filatov, J. Superhard Mater. 45(2), 140 (2023).
https://doi.org/10.3103/S106345762302003X

20. Yu.D.Filatov, V.I.Sidorko, J. Superhard Mater. 27(1), 53 (2005).

21. Yu.D.Filatov, V.I.Sidorko, A.Y.Boyarintsev et al., J. Superhard Mater. 44(4), 276 (2022).
https://doi.org/10.3103/S1063457622040037

22. J.F.Fang, Y.M.Xuan, Q.Li, Sci. China Technol. Sci. 53(11), 3088 (2010).
https://doi.org/10.1007/s11431-010-4110-5

23. F.H.Al-K.Mahasin, S.R.Zahraa, R.S.Sanaa, J. Radiat. Res. Appl. Sci. 9(3), 321 (2016).

24. L.Qionglin, Z.Shunqin, S.You et al., RSC Adv. 8, 17151 (2018).
https://doi.org/10.1039/C8RA02472C

25. V.Herman, H.Takacs, F.Duclairoir et al., RSC Adv. J. Name. 63, 51371 (2015).
https://doi.org/10.1039/C5RA06847A

26. Q.Chan, Z.Chunhuan, Z.Zhonghao et al., CCS. Chemistry. 4(1), 250 (2022).

27. J.Saha, D.Dey, A.D.Roy et al., J. Luminescence. 172, 168 (2016).
https://doi.org/10.1016/j.jlumin.2015.12.004

28. J.A.Rivera, K.V.Desai, J.G.Eden, AIP Advances. 11, 125033 (2021).
https://doi.org/10.1063/5.0068168

29. L.Cerdan, E.Enciso, V.Martin et al., Nature Photonics. 6(9), 621 (2012).
https://doi.org/10.1038/nphoton.2012.201

30. Q.Chen, A.Kiraz, X.Fan, Proc. SPIE. 9725, 97250I-1 (2016).

31. M.Aas, Q.Chen, A.Jona's et al., IEEE J. Select. Topics Quantum Electron. 22(4), 7000215 (2016).
https://doi.org/10.1109/JSTQE.2015.2477397

32. O.Yu.Filatov, V.I.Sidorko, S.V.Kovalev et al., J. Superhard Mater. 38(3), 197 (2016).
https://doi.org/10.3103/S1063457616030072

33. Yu.D.Filatov, V.I.Sidorko, S.V.Sokhan' et al., J. Superhard Mater. 45(1), 54 (2023).
https://doi.org/10.3103/S1063457623010045

34. A. Boyarintsev, A. De Roeck, S. Dolan et al., JINST 16 P12010 (2021).
https://doi.org/10.1088/1748-0221/16/12/P12010

35. A. Yu. Boyarintsev, A.V.Kolesnikov, S.N. Kovalchuk et al., Functional Materials 28(4) (2021)
https://doi.org/10.15407/fm28.04.758

36. A. Yu. Boyarintsev , N.Z. Galunov , B.V. Grinyov et al., NIMA 930 (2019).
https://doi.org/10.1016/j.nima.2019.03.100

Current number: