Funct. Mater. 2023; 30 (4): 463-470.

doi:https://doi.org/10.15407/fm30.04.463

Influence of irradiation and impurity defects on the fluctuation conductivity of YBa2Cu3O7-δ single crystals

G.Ya. Khadzhai1, I. Goulatis2, A. Chroneos2,3, V.Yu. Gres1, L.V. Bludova4, A. Feher5, R.V. Vovk1,6

1V.N. Karazin Kharkiv National University, 61022, Svoboda Sq. 4, Kharkiv, Ukraine
2Department of Electrical and Computer Engineering, University of Thessaly, 38333 Volos, Greece
3Department of Materials, Imperial College London, London SW7 2BP, United Kingdom
4B.Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, Kharkiv, 61103, Ukraine
5Centre of Low Temperature Physics, Faculty of Science,P.J. Safarik University, Park Angelinum 9, 041 54 Kosice, Slovakia
6Ukrainian State University of Railway Transport, 61050, Feierbakh Sq. 7, Kharkiv, Ukraine

Abstract: 

The effect of medium doses (from 1019 е/cm2to 1020 е/cm2) of fast electron irradiation and the change in the praseodymium concentration in the range 0.0 ≤ z ≤ 0.5 on the excess conductivity of optimally oxygen-doped YBa2Cu3O7-δ single crystals has been investigated. It was determined that electron irradiation and an increase in the degree of doping with praseodymium leads to a significant expansion of the temperature interval of excess conductivity existence, thereby narrowing the region of the linear dependence ρ(Т) in the ab plane. It was determined that at doses 0≤D≤6.5·1019 е/cm2, the value of the transverse coherence length ξс(0) increases with an increase of D by about 3 times and more than four times as the content of praseodymium in the sample increases to z ≈ 0.42. In both cases, the 2D-3D crossover point shifts upward in temperature. In contrast to the case of irradiation with low doses (D≤1019 е/cm2) and doping with praseodymium up to concentrations z ≤ 0.39, irradiation with medium doses and doping with praseodymium at higher concentrations leads to a nonmonotonic dependence of the transverse coherence length ξс(0) on the irradiation dose, with characteristic maxima at D~(7-8)·1019 е/cm2 and z≈0.42, which may be due to the general suppression of the superconducting characteristics.

Keywords: 
YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-δ</sub> single crystals, excess conductivity, irradiation, fast electrons, 2D-3D crossover.
References: 

1. R.V. Vovk, A.L. Solovjov, Low Temp. Phys., 44, 81 (2018).
https://doi.org/10.1063/1.5020905

2. T.A. Friedman, J.P. Rice, J. Giapintzakis, and D.M. Ginzberg, Phys. Rev. B, 39, 4258 (1989).
https://doi.org/10.1103/PhysRevB.39.4258

3. R.V. Vovk, A.A. Zavgorodniy, M.A. Obolenskii, et al., Modern Physics Letters B, 24, 2295 (2010).
https://doi.org/10.1142/S0217984910024675

4. L. Mendonca Ferreira, P. Pureur, H. A. Borges, and P. Lejay. Phys. Rev. B, 69, 212505 (2004). https://doi.org/10.1103/PhysRevB.69. 212505

5. R.V. Vovk, G.Ya. Khadzhai, I.L. Goulatis, A. Chroneos, Physica B: Condensed Matter, 436, 88 (2014).
https://doi.org/10.1016/j.physb.2013.11.056

6. H.A. Borges and M.A. Continentino, Solid State Commun. 80, 197 (1991).
https://doi.org/10.1016/0038-1098(91)90180-4

7. A.L. Solovjov, L.V. Omelchenko, V.B. Stepanov, et al., Phys. Rev. B, 94, 224505-1 (2016).
https://doi.org/10.1103/PhysRevB.94.224505

8. A. L. Solovjov, H.-U. Habermeier, T. Haage, Low Temp. Phys.,28, 17 (2002).
https://doi.org/10.1063/1.1449180

9. R.V. Vovk, N.R. Vovk, G.Ya. Khadzhai, et al., Physica B, 422, 33 (2013).
https://doi.org/10.1016/j.physb.2013.04.032

10. R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, et al., Modern Physics Letters B, 25, 2131(2011).
https://doi.org/10.1142/S0217984911027327

11. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
https://doi.org/10.1088/0034-4885/62/1/002

12. L.G. Aslamazov, A.I. Larkin, Phys. Lett., 26A, 238 (1968).
http://dx.doi.org/10.1016/0375-9601 (68)90623-3

13. W.E. Lawrence and S. Doniach. Theory of layer-structure superconductors. Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto, Japan, 1970, ed. by E. Kanda, Tokyo, Keigaku, 1970, p. 361.

14. J.B. Bieri, K. Maki and R.S. Thompson, Phys. Rev. B, 44, 4709 (1991).
https://doi.org/10.1103/PhysRevB.44.4709

15. A.V. Bondarenko, A.A. Prodan, M.A. Obolenskii, et al., Low Temp. Phys.,27, 339 (2001).http://dx.doi.org/10.1063/1.1374717
https://doi.org/10.1063/1.1374717

16. N.A. Azarenkov, V.N. Voevodin, R.V. Vovk, et al., J. Mater Sci.: Mater. Electron., 28, 15886, (2017).
https://doi.org/10.1007/s10854-017-7483-4

17. R.V. Vovk, G.Ya. Khadzhai, O.V. Dobrovolskiy, J. Mater Sci.: Mater. Electron., 30, 4766 (2019).
https://doi.org/10.1007/s10854-019-00770-x

18. M. Akhavan, Physica B, 321, 265 (2002).
https://doi.org/10.1016/S0921-4526(02)00860-8

19. A.L. Solovjov, L.V. Omelchenko, E.V. Petrenko, et al., Scientific Reports, 9, 20424, (2019)
https://doi.org/10.1038/s41598-019-55959-1

20. V.I, Beletskiy, G.Ya. Khadzhai, R.V. Vovk, et al., J. Mater Sci.: Mater. Electron., 30, 6688, (2019). https://doi.org/10.1007/s10854-019-00978-x

21. J. Ashkenazi, J. Supercond. Nov. Magn., 24, 1281 (2011).
https://doi.org/10.1007/s10948-010-0823-8

22. A.L. Solovjov, E.V. Petrenko, L.V. Omelchenko, et al., Scientific Reports, 9, 9274 (2019).
https://doi.org/10.1038/s41598-019-45286-w

23. O.O. Oduleye, S. J. Penn, N. Alford., et al., IEEE Trans. Appl. Supercond, 9, 2621 (1999).
https://doi.org/10.1109/77.785024

24. Q. Wang, G.A. Saunders, H.J. Liu, et al., Phys. Rev. B, 55, 8529 (1997).
https://doi.org/10.1103/PhysRevB.55.8529

25. A.I. Chroneos, I.L. Goulatis and R.V. Vovk, Acta Chim. Slov., 54, 179 (2007).

26. A. Chroneos, D.D. Kolesnikov, I.A. Taranova, et al., J. Mater Sci.: Mater. Electron., 31, 19429 (2020).
https://doi.org/10.1007/s10854-020-04476-3

27. N.A. Azarenkov, V.N. Voevodin, R.V. Vovk, et al., VANT ISSN 1562-6016. PAST.? 2 (126), 9 (2020).

28. G.Ya. Khadzhai, R.V. Vovk, O.V. Dobrovolskiy, Physica B: Condensed Matter, 566, 121 (2019).
https://doi.org/10.1016/j.physb.2019.05.004

29. G.Ya.Khadzhai, R.V.Vovk, Z.F.Nazyrov, O.V.Dobrovolskiy, Physica C, 565, 1353507 (2019).
https://doi.org/10.1016/j.physc.2019.1353507

30. G.Ya. Khadzhai, Yu.V. Litvinov, R.V. Vovk, et al., J. Mater Sci.: Mater. Electron., 29, 7725 (2018).
https://doi.org/10.1007/s10854-018-8768-y

31. Q. Wang, G.A. Saunders, H.J. Liu, et al., Phys. Rev. B, 55, 8529 (1997).
https://doi.org/10.1103/PhysRevB.55.8529

32. G.Ya. Khadzhai, V.V. Sklyar, R.V. Vovk, Low Temp. Phys., 48, 271 (2022).
https://doi.org/10.1063/10.0009548

33. Ginsberg D.M. (ed), Physical properties high temperature superconductors I. - Singapore: Word Scientific, 1989, p. 640.

34. J.M. Valles, Jr., A.E. White, K.T. Short, et al., Phys. Rev. В, 39, 11599 (1989).
https://doi.org/10.1103/PhysRevB.39.11599

35. M.C. Frishherz, M.A. Kirk, G.P. Zhang, H.W. Weber, Philosophical Magazine A, 67, 1347 (1993).
https://doi.org/10.1080/01418619308225359

36. G.D. Chryssikos, E.I. Kamitsos, J.A. Kapoutsis, et al., Phys. C: Superconductivity, 254, 44 (1995).

37. R.V. Vovk, M.A. Obolenskii, Z.F. Nazyrov, et al., J. Mater Sci.: Mater. Electron., 23, 1255 (2012).
https://doi.org/10.1007/s10854-011-0582-8

38. M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko, N.N. Chebotaev., Low Temp. Phys., 32, 571 (2006).
https://doi.org/10.1063/1.2215373

39. P.G. De Gennes, Superconductivity of Metals and Alloys, W.A. Benjamin, Inc., New York-Amsterdam (1966).

40. R.V. Vovk, Z.F. Nazyrov, L.I. Goulatis, A. Chroneos, Low Temp. Phys., 170, 216 (2013)
https://doi.org/10.1007/s10909-012-0755-8

41. R.V. Vovk,N.R. Vovk, G.Ya. Khadzhai, et al., Solid State Communications, 190, 18, (2014).
https://doi.org/10.1016/j.ssc.2014.04.004

Current number: