Funct. Mater. 2023; 30 (4): 478-485.

doi:https://doi.org/10.15407/fm30.04.478

Application of the photoluminescent ZnO thin layers in optical immunosensors. Original optical effects

Alla Tereshchenko

Odesa National I.I. Mechnikov University, Pastera 42, 65023, Odesa, Ukraine.

Abstract: 

ZnO-based nanostructured thin films are broadly applied as a template for biosensors due to their fundamental physico-chemical properties. Optical properties of ZnO thin layers, in particular, an intense room temperature photoluminescence open a great possibility to be used for optical biosensor, in particular, immunosensor applications. Due to the progress in nanotechnology, the new methods have been developed for fabrication of nanostructured ZnO thin films with high surface area and advanced properties for biosensors, e.g. atomic layer deposition (ALD), metal organic chemical vapor deposition (MOCVD) and some others. In this report, the influence of the immobilized proteins of an immune complex on the photoluminescence spectra of ZnO thin films formed by ALD method and ZnO thin films consisted of vertically oriented ZnO nanorods grown by MOCVD is presented and discussed. Original optical effects observed during research, in particular, the appearance of resonant standing waves (Whispering Gallery modes) on the photoluminescence spectra and their immunosensor application are demonstrated.

Keywords: 
nanostructured ZnO, photoluminescence, immunosensor, thin films, Whispering Gallery modes.
References: 

1. A.Tereshchenko, M.Bechelany, R.Viter et al., Sens. Actuators B Chem., 229, 664 (2016).
https://doi.org/10.1016/j.snb.2016.01.099

2. A.Tereshchenko, V.Smyntyna, M.Bechelany et al., IEEE Proceedings of NAP-2018, 04NNLS04-3 (2018).
https://doi.org/10.1109/NAP.2018.8915007

3. A.Tereshchenko, V.Smyntyna, A.Ramanavicius, NATO Science for Peace and Security Proceedings, Series A: Chemistry and Biology, Chapter 14, 217 (2020).
https://doi.org/10.1007/978-94-024-2030-2_14

4. A. Tereshchenko, V. Smyntyna, U. Bubniene, A. Ramanavicius, Springer Proceedings in Physics, 244, Nanomaterials in Biomedical Application and Biosensors, Chapter 25, 247 (2020).
https://doi.org/10.1007/978-981-15-3996-1_25

5. D.E.Goszczynski, Arch. Virol., 159, 9, 2523 (2014).
https://doi.org/10.1007/s00705-014-2085-4

6. J. du Preez, D.Stephan, M.Mawassi et al., Arch. Virol., 156, 1495 (2011).
https://doi.org/10.1007/s00705-011-1071-3

DOI: 10.1007/s00705-011-1071-3
https://doi.org/10.1007/s00705-011-1071-3

7. M.Bechelany, S.Balme, P.Miele, Pure Appl. Chem., 87, 8, 751 (2015).
https://doi.org/10.1515/pac-2015-0102

8. A.Tereshchenko, G.Reza Yazdi, I.Konup et al., Colloids Surf. B, 191, 111999 (2020).
https://doi.org/10.1016/j.colsurfb.2020.110999

9. T.Nobis, M.Grundmann, Phys. Rev. A, 72, 063806 (2005).
https://doi.org/10.1103/PhysRevA.72.063806

10. J.′A.Freile, G.Choukrani, K.Zimmermann et al., Sens. Actuators B Chem., 346, 130512, 2021.
https://doi.org/10.1016/j.snb.2021.130512

11. J.T.Gohring, P.S.Dale, X.Fan, Sens. Actuators B Chem., 146, 226 (2010).
https://doi.org/10.1016/j.snb.2010.01.067

12. H.A.Huckabay, R.C.Dunn, Sens. Actuators, B Chem., 160, 1262 (2011).
https://doi.org/10.1016/j.snb.2011.09.060

13. C.E.Soteropulos, H.K.Hunt, A.M.Armani, Appl. Phys. Lett. 99, 103703 (2011).
https://doi.org/10.1063/1.3634023

14. Y.J.Chen, U.Schoeler, C.H.B.Huang, F.Vollmer, Small 14, (2018).
https://doi.org/10.1002/smll.201703705

15. H.Wang, L.Yuan, C.W.Kim, et al., Sens. Actuators B Chem., 216, 332 (2015).
https://doi.org/10.1016/j.snb.2015.04.012

16. J.D.Suter, D.J.Howard, H.Shi et al., Biosens. Bioelectron., 26, 1016 (2010).
https://doi.org/10.1016/j.bios.2010.08.050

17. C.Czekalla, T.Nobis, A.Rahm et al., Phys. Status Solidi B, 247, 6, 1282 (2010).
https://doi.org/10.1002/pssb.200945527

18. T.Reynolds, M.R.Henderson, A.François et al., Opt. Express, 23, 13, 17067 (2015).
https://doi.org/10.1364/OE.23.017067

19. R.S.Moirangthem, P.-J.Cheng, P.C.-H.Chien et al., Opt. Express, 21, 3, 3010 (2013).
https://doi.org/10.1364/OE.21.003010

20. A.Tereshchenko, V.Fedorenko, V.Smyntyna et al., Biosens. Bioelectron., 92, 763 (2017).
https://doi.org/10.1016/j.bios.2016.09.071

21. L.Sun, H.Dong, W.Xie et al., Opt. Express 18, 15,15371 (2010).
https://doi.org/10.1364/OE.18.015371

22. H.Wei, J.Song, Y.Guo et al., Opt. Commun., 511, 128014 (2022).
https://doi.org/10.1016/j.optcom.2022.128014

23. H. Li, H.Zhang, J.Sun, M.Yu et al., Opt. Commun., 497,127193 (2021).
https://doi.org/10.1016/j.optcom.2021.127193

24. F.Vollmer, S.Arnold, Nat. Methods 5, 591 (2008).
https://doi.org/10.1038/nmeth.1221

25. A.Francois, M.Himmelhaus, Sensors, 9, 6836 (2009).
https://doi.org/10.3390/s90906836

26. D.Sodzel, V.Khranovskyy, V.Beni et al., Michrochem. Acta, 182, 1819 (2015).
https://doi.org/10.1007/s00604-015-1493-9

27. H.Chen, Y.Liu, C.Xie et al., Ceram. Int. 38, 503 (2012).
https://doi.org/10.1016/j.ceramint.2011.07.035

28. A.Tereshchenko, V.Smyntyna, A.Ramanavicius, RSC Adv., 8, 37740 (2018).
https://doi.org/10.1039/C8RA07347C

29. M.K.Quinn, N.Gnan, S.James et al., Phys. Chem. Chem. Phys. 17, 31177 (2015).
https://doi.org/10.1039/C5CP04463D

30. T.Rinken, State of the Art in Biosensors - General Aspects, InTechOpen, 362 p. (2013).
https://doi.org/10.5772/45832

31. J.Politi, I.Rea, P.Dardano et al., Sens. Actuators B: Chem, 220, 705 (2015).
https://doi.org/10.1016/j.snb.2015.05.135

32. O.V.Chudinovych, D.V.Myroniuk, L.A.Myroniuk et al., Funct. Mater., 30, 2, 171 (2023).
https://doi.org/10.15407/fm30.02.171

33. O.O.Sarapulova, V.P.Sherstiuk, Funct. Mater., 21, 2, 146 (2014).

https://dx.doi.org/10.15407/fm22.02.146
https://doi.org/10.15407/fm22.02.146

34. A.Ramanavicius, V.Karabanovas, A.Ramanaviciene, R.Rotomskis, J. Nanosci. Nanotechnol., 9, 3, 1909 (2009).
https://doi.org/10.1166/jnn.2009.361

35. J.Wang, Y.Jiao, Y.Liu et al., J. Nanomater, 2013, 596313 (2013).
https://doi.org/10.1155/2013/596313

Current number: