Funct. Mater. 2023; 30 (4): 533-540.

doi:https://doi.org/10.15407/fm30.04.533

Composite material "aluminum dodecaboride α-AlB12– fluorinated polyamide": synthesis and properties

V.E.Sheludko1, V.B.Muratov1, V.V.Kremenitsky2, A.V.Pavliuk3, V.A.Povazhnyi3, Yu.I.Bogomolov3

1I.N. Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03142 Kyiv, Ukraine
2Technical Center, National Academy of Sciences of Ukraine, 13 Pokrovskaya Str., 04070 Kyiv, Ukraine
3V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 50 Kharkovskoe Shausse, 02160 Kyiv, Ukraine

Abstract: 

In the article, some properties of composites based on fluorinated aromatic polyamide (polymer matrix) and highly dispersed refractory filler – aluminum dodecaboride α-AlB12 are investigated. Fluorinated polyamide was synthesized by low temperature polycondensation in amide solvents. Cross-linked compositions were obtained by high-temperature treatment of a mixture of polyamide, epoxy oligomer, and aluminum dodecaboride (200 °C, 2 h). The particle sizes of aluminum dodecaboride are analyzed by drawing the necessary cross-sections on 2D-images of the surface topography obtained by AFM. The thermal-oxidative stability of aluminum dodecaboride powder and film compositions was studied, and the activation energy of thermal destruction Ea was calculated. To determine the differences in the relief of cross-linked and non-cross-linked samples, the surfaces of the film composites were scanned using AFM. The microhardness of surfaces in cross-linked systems was established to increase significantly with an increase in the content of aluminum dodecaboride, they are also characterized by an increased temperature of deformation strength (up to 300-325 °C). The features of the change in the friction coefficient of the synthesized compositions depending on the material of the counterbody are studied. It is shown that when using synthesized compositions as a counterbody, the friction coefficient decreases by an order of magnitude (f = 0.017-0.059).

Keywords: 
aluminum dodecaboride, fluorinated polyamide, thermal-oxidative stability, microhardness, friction factor
References: 

1. P.S.Kisly, V.A.Neronov, T.A.Prikhna et al, Aluminum Borides, Nauk. Dumka, Kiev (1990) [in Russian].

2. J.L.Colon Quintana, S.Soto Medina, M.Hernandez, Adv. Mater. Sci Eng., ArticleID 2975234, (2018). http//:doi.org/10.1155/2018/2975234.

3. N.A.Bratasyuk, N.N.Saprykina, V.V.Zuev. Mat. Chem. Phys., 277, 125514 (2022).
https://doi.org/10.1016/j.matchemphys.2021.125514

4. J.Joy, E.George, P.Haritha et al., J. Polym. Sci., 58, 3115 (2020).
https://doi.org/10.1002/pol.20200507

5. M.L.Whittaker, Synthesis, Characterization and Energetic Performance of Metal Boride Compounds for Insensitive Energetic Materials, The Univ. of Utah, College of Eng., Master Thesis, 2012.

6. T.-L.Li, S.L.-C.Hsu, J. Appl. Polym. Sci., 121, 916 (2011).
https://doi.org/10.1002/app.33631

7. M.Sadej, L.Gierz, M.Naumowicz, Polimery, 64, 591 (2019).
https://doi.org/10.14314/polimery.2019.9.3

8. Ye and Z.Yu., J. Polym. Eng., 2019, 39, 508 (2019).
https:// doi.org/10.1515/polyeng-2018-0375.

9. Z.-Q.Yu, Y.Wu, B.Wei et al., Mat. Chem. Phys., 164, 214 (2015). DOI:
https://doi.org/10.1016/j.matchemphys.2015.08.049

10. A-K.A.Kallinikou, Th.G.Velmachos and G.C.Psarras, in: Proc. 18th Europ. Conf. on Composite Materials (ECCM18), Athens, Greece (2018), Poster P_2.46.

11. A.Joseph, G.M.Joshi, J. Mat. Sci: Mat. Electron., 29, 4749 (2017).
https://doi.org/10.1007/s10854-017-8431-z

12. T.R.Shrout, D.Moffatt, W.Huebner, J. Mat. Sci., 26, 145 (1991).
https://doi.org/10.1007/BF00576045

13. G.B.Vaggar, V.B.Sirimani, D.P.Sataraddi, Int. J. Eng. Res. Technol., 10, ArticleID IJERTV10IS080008 (2021).
https://doi.org/10.17577/IJERTV10IS080008.

14. W.Zhou, S.Qi, H.Li et al., Thermochim. Acta, 452, 36 (2007).
https://doi.org/10.1016/j.tca.2006.10.018

15. B.C.D.Luan, J.Huang, J.Zhang, J. Appl. Polym. Sci., ArticleID 42302 (2015).
https://doi.org/10.1002/app.42302.

16. X.Q.Pei and K.Friedrich, Friction and Wear of Polymer Composites, in Reference Module in Materials Science and Materials Engineering, Elsevier, Amsterdam, The Netherlands (2016). https://doi.org/10.1016/B978-0-12-803581-8.03074-5.

17. V.M.Buznik, Russian Nanotechnologies, 4, 35 (2009) [in Russian].

18. V.N.Bakulin, N.F.Dubovkin, V.N.Kotova et al., Energy-intensive Fuels for Aircraft and Rocket Engines, Fizmatlit, Moscow (2009) [in Russian].

19. A.G.Korotkikh, K.V.Slyusarsky, I.V.Sorokin, Chem. Phys. Mesoscopy, 22, 164 (2020). https://doi.org/10.15350/17270529.2020.2.16 [in Russian].

20. Sh.L.Guseinov, S.G.Fedorov, A.Yu.Tuzov, Nanotechnologies in Russia, 10, 420 (2015).
https://doi.org/10.1134/S199507801503009X

21 UA Patent 107193 (2016).

22 B.F.Malichenko and O.N.Tsipina, Vysokomolek. Soed., B11, 361 (1979) [in Russian].

23 A.V.Paustovskii, B.M.Rud′, V.E.Shelud′ko et al., Powder Metall. Met. Ceram.55, 437 (2016).
https://doi.org/10.1007/s11106-016-9824-x

24 G.V.Samsonov, T.I.Serebryakova, V.A.Neronov, Borides, Atomizdat, Moscow (1975) [in Russian].

25 L.B.Sokolov, V.D.Gerasimov, V.M.Savinov et al., Thermostable Aromatic Polyamides, Khimiya, Moscow (1975) [in Russian].

26 O.N.Tsipina, Ye.V.Sheludko, Lakokrasochnyye Materialy i ih Primeneniye, 2, 15 (1990) [in Russian].

27 I.M.Fedorchenko, V.M.Kryachek, I.I.Panaiotti, Modern Frictional Materials, Nauk. Dumka, Kiev (1975) [in Russian].

28 O.P.Umanskii, A.G.Dovgal, V.L.Syrovatka et al., Silicon Carbide-based Composition Materials for Compacted Products and Gas-Thermal Coatings, Nauk. Dumka, Kiev (2022) [in Ukrainian].

29 Wagih W.Marzouk, Mustafa A.Abdel-Rahman, Tribologia, 5, 97 (2012).

Current number: