Funct. Mater. 2023; 30 (4): 597-605.

doi:https://doi.org/10.15407/fm30.04.597

Simulation of the influence of alloying elements on the characteristics of the formation of vacuum-arc nitride coatings

N.V. Pinchuk 1,2, V.V. Subbotina1, O.S. Terletskyi1, I.M. Kolupaiev 1, M.M. Tkachuk1,2, S.V. Hryhorieva1

1National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine
2Karlstad University, Karlstad, Sweden

Abstract: 

An analysis of trends in the interaction of elements of the Periodic Table was carried out and the results obtained were compared with a model material (namely with a TiN coating); predictions were made for structure formation in vacuum-arc nitride coatings and modeling of the properties of the final coating depending on the composition and deposition conditions This made it possible to explain changes in structural characteristics and mechanical properties in the presence of weaker and/or stronger nitride-forming elements in nitride coatings. Under all deposition conditions and different elemental compositions, single-phase crystalline coatings were obtained. The addition of Mo to the coating increases the lattice period of TiMoN. It was established that the high-entropy coatings (TiVZrNbHf)N and (TiVZrNbHfTa)N are single-phase with an fcc lattice. The high entropy of the system prevents the formation of intermetallic compounds. The coatings are polycrystalline with a crystallite size of 20-23 nm. It has been established that high-entropy coatings obtained at a nitrogen atmosphere pressure of 0.26 Pa and a constant bias potential of –200 V have the highest hardness value of 53–55 GPa. The theoretical model used to analyze the characteristics of high-entropy alloys and nitride coatings based on them has been confirmed experimentally.

Keywords: 
Coatings, High-entropy alloys (HEA), Structural engineering, Alloying, Multicomponent nitrides, Texture.
References: 

1. D. Loktev, E. Ymashin, Nanoindustry, 4, 18 (2007) [in Russian].

2. J. Musil, P. Baroch, P. Hard, Research Singpost, 1 (2008).

3. M.D. Drory, R.D. Evans, Surf. Coat. Technol., 206, 1983 (2011).

4. Sobol O.V., Pinchuk N.V. et al., Functional Materials, 27 (4), 736 (2020).

5. J. Lin, J. J.Moore, B. Mishra et al., Acta Materialia, 58, 1554 (2010).

6. A.D. Pogrebnjak, I.V.Yakushchenko et al, Materials Chemistry and Physics, 147, 1079 (2014).

7. Harish C. Barshilia, Shashidhara Acharya et al., Vacuum, 85, 411 (2010).

8. M.G.Faga, G.Gautier et al., Wear, 263, 1306 (2007). – Vol.263. – P.1306-1314.

9. V.Riaboshtan, A. Zubkov et al., Lecture Notes in Mechanical Engineering, Grabchenko′s International Conference on Advanced Manufacturing Processes, InterPartner, Odessa, Ukraine (2022), p. 334 – 342.

10. H.C. Barshilia, M. Ghosh, R. Ramakrishna, K.S. Rajam, Applied Surface Science, 256, 6420 (2007).

11. G. Martinez et al., Ceramics International, 4, 5757 (2014).

12. Li-Jian Meng, M.P. Santos, Surface and Coatings Technology, 90, 64 (1997).

13. Az. Ahaitouf, J. C. Gerbedoen, A. Soltani, J. Mater. Environ. Sci., 1, 309 (2010).

14. Nadia, Karim Henda et Rafika Kesri, J. Plasma fusion res. Series, 8, 1403 (2009).

15. M. F. Montemor, Surface and Coatings Technology, 258, 17 (2014).

16. O.V. Sobol′, A.A. Andreev, V.A. Stolbovoj, V.F. Grigor′ev, S.N. Volosova, S.V. Aleshin, V.F. Gorban′, VANT, 4-98/74, 174 (2011).

17. S.A. Firstov, V.F. Gorban, N.A. Krapivka, N.I. Danilenko, V.N. Nazarenko, VANT, 2 (96), 178 (2015).

18. Noyan I.C., Cohen J.B. Residual stress measurement by diffraction and interpretation, Springer-Verlag: NewYork, 1987; 350 p.

19. C. Genzel. Phys. stat. sol. (a) 159, 283 (1997).

20. C. Genzel, W. Reinmers. Phys. Stat. Solidi: A-Applied Research, 166 (2), 751 (1998).

21. E. Aznakayev, Micron – Gamma for estimation the physico-mechanical properties of micro-materials, Proceedings of the International Conference "Small Talk – 2003", San Diego, California, USA (2003), p. 8-10.

22. V.F. Gorban′, Powder Metallurgy and Metal Ceramics, 47 (7-8), 493 (2008).

23. F.F. Komarov, A.D. Pogrebnjak, S.V. Konstantinov, Technical Physics, 60 (10), 1519 (2015).

24. Jien Wei Yeh, Yu Liang Chen, Su Jien Lin, Swe Kai Chen, Materials Science Forum, 560, 1 (2007).

25. P. Jinhong, P. Ye, Rare Metal Materials and Engineering, 42 (2), 232 (2013).

26. F. Tian, L.K. Varga, N. Chen, J. Shen, L. Vitos, Intermetallics, 58, 1 (2015).

27. Y. Zhang, T. T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Progress in Materials Science, 61, 1 (2014).

28. C.H. Lai, M.H. Tsai, S.J. Lin, J.W. Yeh, Surface and Coatings Technology, 201, 6993 (2007).

29. Murty, B. S., Yeh J. W., Ranganathan S. High-Entropy Alloys, Elsevier: London, 2014; 213 p.

30. A.D. Pogrebnjak, A.A. Bagdasaryan, I.V. Yakushchenko, V.M. Beresnev, Russ. chem. rev., 83 (11), 1027 (2014).

31. Akira Takeuchi, Akihisa Inoue, Materials transactions, 46 (12), 2817 (2005).

32. A.R Miedema; K.H.J Buschow; H.H Van Mal, Journal of the Less-Common Metals, 49, 463 (1976).

Current number: