Funct. Mater. 2023; 30 (4): 606-614.

doi:https://doi.org/10.15407/fm30.04.606

The effect of cerium doping and rate of crystallization on the morphology and microstructure of the Al2O3/YAG eutectic composite

L.O. Gryn, Yu.V. Siryk, V.V. Baranov, O.M. Vovk, S.V. Naydenov, S.V. Nizhankovsky

NTK Institute for Single Crystals of the National Academy of Sciences of Ukraine, Institute for Single Crystals of the National Academy of Sciences of Ukraine, Nauky av., 60, 61001, Kharkiv, Ukraine

Abstract: 

Al2O3/YAG and Al2O3/YAG:Ce3+ eutectics (up to 1 at.%) with a Chinese script microstructure were obtained by the method of horizontal directional crystallization (HDC) in a carbon-containing reducing atmosphere based on Ar. The effects of the pooling rate and Ce3+ dopant concentration on the microstructure of the eutectic were studied by the modified chord method. The deviation of the dependence of the characteristic eutectic distance (λeut) on the pooling rate (V) from the Jackson-Hunt model for the Al2O3/YAG eutectic has been established. It was shown that in the range V=5-50mm/h, the relation was satisfied. A change in the pathway for restructuring the structure of the doped eutectic at a certain critical pooling rate was revealed, which may indicate that the development of morphological instability of the crystallization front is carried out as a two-stage process. The conditions for obtaining doped eutectic Al2O3/YAG:Ce3+ of high homogeneity with a minimal characteristic eutectic distance λeut and a minimal difference between the parameters of coarse and fine microstructure have been established. It was shown that increasing cerium ion concentration causes an increase in the structure parameters and its value deviation. Intensive formation of the third phase occurred when the limit of cerium ion concentration was exceeded.

Keywords: 
Al<sub>2</sub>O<sub>3</sub>/YAG:Ce<sup>3+</sup>eutectic composite, cerium dopant, horizontal directional crystallization, microstructure, crystal morphology
References: 

1. K. Bando, K. Sakano, Y. Noguchi at al., J. Light Vis. Environ., 22, 2 (1998).
https://doi.org/10.2150/jlve.22.1_2

2. H. Park, J. Oh, Y.Do., Opt. Express, 20, 10218, (2012).
https://doi.org/10.1364/OE.20.010218

3. Y. Liu, M. Zhang, Y. Nie at al., J. Eur. Ceram. Soc.,37, 4931 (2017).
https://doi.org/10.1016/j.jeurceramsoc.2017.06.014

4. Q. Sai, Z. Zhao, C. Xia at al., Opt. Mater., 35, 2155(2013).
https://doi.org/10.1016/j.optmat.2013.05.035

5. Q. Song, X. Xu, J. Liu at al., Сryst. Eng. Comm., 21, 4545 (2019).
https://doi.org/10.1039/C9CE00703B

6. M. Yoshimura, S. Sakata, S. Yamada at al., J. Cryst. Growth, 427,16 (2015). .
https://doi.org/10.1016/j.jcrysgro.2015.06.023

7. X. Wang, J. Wang, L. Sun at al., Scr. Mater., 108, 31 (2015).
https://doi.org/10.1016/j.scriptamat.2015.05.038

8. X. Yi, S. Zhou, C. Chen at al., Ceram. Int., 40, 7043 (2014).
https://doi.org/10.1016/j.ceramint.2013.12.034

9. Y. Waku, N. Nakagawa, T. Wakamoto at al., Nature, 389, 49 (1997).
https://doi.org/10.1038/37937

10. Y. Waku, N. Nakagawa, H. Ohtsubo at al., J. Mater. Sci., 36, 1585 (2001).
https://doi.org/10.1023/A:1017519113164

11. Y. Nie, M. Zhang, Y. Liu at al., J. Alloy. Compd., 657, 184 (2016).
https://doi.org/10.1016/j.jallcom.2015.10.089

12. H. Yasuda, I. Ohnakaa, Y. Mizutani at al., J. Eur. Ceram. Soc., 25, 1397 (2005).
https://doi.org/10.1016/j.jeurceramsoc.2005.01.019

13. A. Yoshikawa, B. M. Epelbaum, K. Hasegawa at al., J. Cryst. Growth, 205,305 (1999).
https://doi.org/10.1016/S0022-0248(99)00265-1

14. S. Yamada, M. Yoshimura, S. Sakataatal., J. Cryst. Growth, 448, 1 (2016).
https://doi.org/10.1016/j.jcrysgro.2016.05.003

15. K. Jackson, J. Hunt, T.Metall. AIME, 236, 1129 (1966).
https://doi.org/10.1016/B978-0-08-092523-3.50040-X

16. Y. Mizutania, H. Yasuda, I. Ohnaka at al., J. Crys. Growth, 244,384 (2002). https://doi.org/10.1016/S0022-0248(02)01655-X
https://doi.org/10.1016/S0022-0248(02)01655-X

17. J. LLorca, V. Orera, Prog. Mater. Sci., 51, 711 (2006).
https://doi.org/10.1016/j.pmatsci.2005.10.002

18. Y. Nie, J.Han, Y. Liu at al., Mat. Sci. Eng. A, 704, 207 (2017).
https://doi.org/10.1016/j.msea.2017.07.098

19. Y. Liu, T. Wang, Y. Nie at al., J. Alloy. Compd., 782, 348 (2019). https://doi.org/10.1016/j.jallcom.2018.12.209
https://doi.org/10.1016/j.jallcom.2018.12.209

20. O. Voloshin, O. Vovk, Yu. Siryk at al., J. Alloy. Compd., 961, 170940 (2023).
https://doi.org/10.1016/j.jallcom.2023.170940

21. Yu. Siryk, O. Vovk, L. Gryn at al., ActaPhys. Pol. A, 141, 268 (2022).
https://doi.org/10.12693/APhysPolA.141.268

22. O. Vovk, Yu. Siryk, S. Nizhankovskyi at al., J. Alloy. Compd., 934, 168004, (2023).
https://doi.org/10.1016/j.jallcom.2022.168004

23. S. Nizhankovskyi, A.Tan′ko, Yu.Savvin, at al., Opt. Spectrosc. 120, 915, (2016).
https://doi.org/10.1134/S0030400X16050210

24. M. Badets, C. Bessada, P. Simon at al., ESA SP, 295511 (1989).

25. J. Caslavsky, D. Viechnicki, J. Mater. Sci., 15, 1709 (1980).
https://doi.org/10.1007/BF00550589

26. A. Spektor, Zavodskaya laboratoriya, 2, 173, (1950). [in Russian].

27. W. Tiller, K. Jackson, J. Rutter at al., Acta Metall., 1, 428 (1953).
https://doi.org/10.1016/0001-6160(53)90126-6

28. N. Toropov, V. Barzakovskii, V. Lapin, N. Kurtseva, Diagrams of state for silicate systems: a handbook, Nauka, Leningrad (1965). [in Russian].

29. Y. Liu, M. Zhang, D. Wu, J. Alloy. Compd., 816, 152515, (2020).
https://doi.org/10.1016/j.jallcom.2019.152515

30. D. Park, J. Yang, Mat. Sci. Eng. A, 332, 276 (2002).
https://doi.org/10.1016/S0921-5093(01)0174

Current number: