Funct. Mater. 2023; 30 (4): 615-619.

doi:https://doi.org/10.15407/fm30.04.615

Peculiarities of doping KBr-2SrBr2 melt with europium at 973 K

V.L.Cherginets1, O.L.Rebrov1, T.P.Rebrova1, T.V.Ponomarenko1, Yu.M.Datsko1, A.G.Varich1, O.I.Yurchenko2 and V.V.Soloviev3

1NTK Institute for Single Crystals of the National Academy of Sciences of Ukraine, Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky av., 61001, Kharkiv, Ukraine
2V.N.Karazin Kharkiv National University, Svobody Sq., 4, 61022, Kharkiv, Ukraine
3 National University "Yuri Kondratyuk Poltava Polytechnic",24 Pershotravneva av.,36011, Poltava, Ukraine

Abstract: 

The processes of Eu2O3 solubilization in molten KBr-2SrBr2 at 973 K were studied from the viewpoint of introducing rare-earth dopants in melts in situ for obtaining activated halide scintillators. The control of the solubilization was performed on the basis of current oxide-ion molality ( ) which was detected by the potentiometric method. A membrane oxygen electrode Pt(O2)\YSZ was used as an indicator one. The process of Eu2O3 solubilization in KBr-2SrBr2 melt with the formation of Eu2+ does not occur due to slight solubility of EuO or EuOBr. The solubility product of EuO in the studied melt is estimated as 2.8·10-7 mol2·kg-2. The carbohalogenation process (treatment with ′C+Br2′ red-ox couple) provides not only the dissolution of oxide, but also complete Eu3+-Eu2+ reduction. The kinetic study of the carbohalogenation process in KBr-2SrBr2 melt containing suspension of Eu oxocompounds show that in this case the plateau-like section arises in ′pO-time′ dependences due to participation of two solid substances (carbon and Eu oxocompounds) in the reaction. The data corresponding to the end of this plateau-like section give another option to estimate the solubility product of EuO as 1.6·10-7 mol2·kg-2 that is in a good agreement with the above value (taking into account the experimental errors). The dissolution of Eu2O3 (at the addition of = 5·10-3 mol·kg-1) is finished in 40 min and the total deoxidization process is finished in 90 min whereas in the reference experiment the duration of the deoxidization of ′pure′ melt is 50 min.

Keywords: 
potassium bromide, strontium bromide, europium oxide, melts, solubility, carbohalogenation.
References: 

1. Y. Castrillejo, M.R. Bermejo, R. Pardo, A.M. Martınez, J. Electroanal. Chem., 522, 124 (2002).
https://doi.org/10.1016/S0022-0728(02)00717-9

2. M.S. Lukashova, K.N. Belikov, K.Yu. Bryleva, S.G. Kharchenko, S.G. Vishnevsky, V.I. Kalchenko. Funct. Mater., 23, 111 (2016).
https://doi.org/10.15407/fm23.01.111

3. Y. Castrillejo, M.R. Bermejo, E. Barrado, A.M. Martınez, P. Dıaz Arocas., J. Electroanal. Chem., 545, 141 (2003).
https://doi.org/10.1016/S0022-0728(03)00092-5

4. K.Sridharan. Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation, Project No. 09-780, University of Wisconsin, Madison, NEUP Final Report, 115 p. (2012).
https://doi.org/10.2172/1058922

5. A.L. Rebrov, Ya.A. Boyarintseva, V.L. Cherginets, T.E. Gorbacheva, A.Yu. Grippa, T.P. Rebrova, T.V. Ponomarenko, O.I. Yurchenko, N.V. Rebrova, V.A. Tarasov, P.N. Zhmurin. Funct. Mater., 28, 633 (2021). (https://doi.org/10.15407/fm28.04.1).

6. K. W. Krämer, P. Dorenbos, H. U. Güdel, C. W. E. van Eijk., J. Mater. Chem., 16, 2773 (2006).
https://doi.org/10.1039/B602762H

7. N.J. Cherepy, G. Hull, A.D. Drobshoff, S.A. Payne, E. van Loef, C.M. Wilson, K.S. Shah, U.N. Roy, A. Burger, L.A. Boatner, W.-S. Choong, W.W. Moses., Appl.Phys.Lett., 92 Art No 083508 (2008).
https://doi.org/10.1063/1.2885728

8. E.D.Bourret-Courchesne, G.Bizarri, S.M.Hanrahan et al, Nucl. Instrum. Methods Phys. Res. A, 613, 95 (2010). (https://doi.org/10.1016/j.nima.2009.11.036).
https://doi.org/10.1016/j.nima.2009.11.036

9. L. Stand, M. Zhuravleva, H. Wei, C.L. Melcher, Opt. Mater., 46, 59 (2015).
https://doi.org/10.1016/j.optmat.2015.04.002

10. A.L.Rebrov, V.L.Cherginets, T.P.Rebrova, T.V.Ponomarenko, A.G.Varich, O.I.Yurchenko, V.V.Soloviev, Funct.Mater, 30, 431 (2023).
https://doi.org/10.15407/fm30.03.431

11. H. Hayashi, K. Minato, J. Phys. Chem. Solids, 66, 422 (2005).
https://doi.org/10.1016/j.jpcs.2004.06.054

12. M.C. Petri, A.E. Klickman, M. Hori, Appl. Nucl. Power, Oarai, Japan, 2007.

Current number: