Funct. Mater. 2023; 30 (4): 620-624.

doi:https://doi.org/10.15407/fm30.04.620

Preparation of nano-sized zinc oxide by adjusting the reaction system alkalinity and its antibacterial properties

Junli Xue1, Wenchong Zhang2, Chen Wang3, Lin Zhu1, Xueling Cao3

1 College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
2 Cangzhou Yunhe District Emergency Management Bureau, Hebei 061000, China
3College of Science, Qiongtai Normal University, Hainan 571100, China

Abstract: 

This paper uses the precipitation method to prepare multi morphology nano-zinc oxide materials. Using sodium lignosulfonate (CMN) as a structural directing agent and zinc acetate (ZnAC) and sodium hydroxide (NaOH) as raw materials, the influence of alkalinity on the preparation of nano-zinc oxide during the reaction process was studied by adjusting the NaOH concentration through the controlled variable method. The purity and morphology of the prepared nano-zinc oxide were characterized. The antibacterial properties were also studied. The experimental results show that the nano-zinc oxide prepared by this method has good antibacterial characteristics and can be used as a potential antibacterial agent.

Keywords: 
nano-zinc oxide; alkalinity; morphology; antibacterial performance
References: 

1. J. H. Lee, G. S. Lee, E. N. Park, et al. Materials, 16, 2099(2023).
https://doi.org/10.3390/ma16052099

2. L. Wang, X. M. Cui, Q. Y. Dong, et al. Nanotechnology, 34, 9(2022).
https://doi.org/10.1088/1361-6528/ac9e05

3. B. Pare, V. S. Barde, V. S. Solanki, et al. Water, 2022, 14, 3221(2022).
https://doi.org/10.3390/w14203221

4. M. Savić, L. A. Janošević, N. Gavrilov, et al. Materials, 16, 1018(2023).
https://doi.org/10.3390/ma16031018

5. H. L. Dai, T. S. Sun, T. Han, et al. Environ. Res., 191, 110086(2020).
https://doi.org/10.1016/j.envres.2020.110086

6. H. S. Tyagi, T. W. Dash, A. K. Maharana, et al. J. Phys. Chem. Lett., 13, 12019(2022).
https://doi.org/10.1021/acs.jpclett.2c03318

7. Y-IL. Kim, R. Seshadri. Inorg. Chem., 47, 8437(2008).
https://doi.org/10.1021/ic800916a

8. Y. J. Han, Q. J. Aizenber. J. Am. Chem. Soc., 125, 4032(2003).
https://doi.org/10.1021/ja034094z

9. J. Y. Lao, J. G. Wen, Z. F. Ren, et al. Nano Lett., 3, 235(2003).
https://doi.org/10.1021/nl025884u

10. K. Yongseon, K. Shinhoo. J. Phys. Chem., 114, 7874(2010).
https://doi.org/10.1021/jp100086v

11. H. Ma, P. L. Williams, S. A. Diamond. Environ. Pollut., 172, 76(2013).
https://doi.org/10.1016/j.envpol.2012.08.011

12. K.R. Raghupathi, R. T. Koodali, A. C. Manna. Langmuir, 27, 4020(2011).
https://doi.org/10.1021/la104825u

13. Xieling Cao, Lin Zhu, Yageng Bai, Functional Materials, 27 (2), 311, 2020
https://doi.org/10.15407/fm27.02.311

Current number: