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Analytical expressions have been obtained for the density of states, reduced chemical poten-
tial, and magnetic susceptibility for a degenerate and nondegenerate electron gas in a quantum 
well in a strong magnetic field. It has been shown that as the magnetic field increases in the 
strongly degenerate case, the quantum levels below the Fermi level cross the Fermi level, re-
sulting in jump oscillations of the density of states, reduced chemical potential, and magnetic 
susceptibility.
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Електронний газовий магнетизм у напівпровіднику. Квантова яма з 
параболичним потенціалом у сильному магнітному полі. Ханлар Гасанов, Джахангір 
Гусейнов, Фаміль Мамедов, Рагім Рагімов, Вусале Дадашова, Наги Гасимов, Айнура 
Гадієва, Ібрагім Аббасов

Отримано аналітичні вирази для щільності станів, наведеного хімічного потенціалу та 
магнітної сприйнятливості виродженого та невиродженого електронного газу в квантовій 
ямі у сильному магнітному полі. Показано, що при збільшенні магнітного поля в сильно 
виродженому випадку квантові рівні нижче рівня Фермі перетинають рівень Фермі, що 
призводить до стрибкоподібних коливань щільності станів, зменшення хімічного потенціалу 
та магнітної сприйнятливості.

1.Introduction
Nowadays, nanotechnology is one of the leading branches of science and technology, which has 

made revolutionary changes in industry. The study of the physical and chemical properties of low-
dimensional electronic systems, the electronic properties of nanostructures associated with quan-
tum size effects is developing very rapidly. Research on magnetic phenomena at the microscopic 
level is important for understanding the nature of quantum phenomena that mediate magnetic in-
teractions in size-limited materials, as well as for developing cost-effective, miniature, and energy-
efficient spintronic devices of a new generation [1]. The size quantization effect makes it possible to 
control the physical properties of quantum layers and create devices with the required character-
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istics [2, 3]. The most important component of nanotechnologies are nanomaterials with unusual 
functional properties determined by the ordered structure of nanofragments in the size range from 
1to 100 nm. Achievements in this field lead to revolutionary developments in medicine, electronics, 
mechanical engineering and the creation of artificial intelligence.

Experimental and theoretical studies of the thermodynamic and galvanomagnetic properties of 
quantum dots, quantum wires, and quantized thin films are of great importance [2, 4-7]. From the 
calculation of the density of non-dissipative conducting currents in a quantum layer in an external 
magnetic field, a well-known universal expression has been obtained expressing the thermo-emf in 
a quantizing magnetic field in terms of the entropy of a unit volume of a gas of free charge carriers 
[8]. The diagonal coefficients of the dissipation tensor have been calculated, which make it possible 
to calculate the transverse galvanomagnetic and thermomagnetic effects based on the expression 
for the dissipative current density in a quantum wire [9]. In [10], the theory of thermo-emf of 
phonon drag for a one-dimensional electron gas in a quantum wire with a confinement parabolic 
potential has been developed, and in the work [11] - the theory of thermo-emf of drag arising in 
the presence of a temperature gradient in the plane of a layer of two-dimensional electron gas in a 
parabolic quantum well.

In [1], in quantum dots with a low capacitance, oscillations have been observed depending on 
the magnetic field for thermo-emf. An analogous phenomenon has been discovered for quantum 
wires in [4, 5, 12]. It has been shown in [13] that when the magnetic field changes, the electromag-
netic eigenmodes of semiconductor nanotubes filled with a nonmetallic dielectric can theoretically 
experience Aharonov-Bohm oscillations. Therefore, this dependence on the magnetic field must be 
repeated for the thermodynamic parameters of the electron gas in the quantum well and wire.

The study of magnetic phenomena at the microscopic level has become an important area of 
research for low-dimensional magnetic materials. Understanding the quantum phenomena under-
lying magnetic interactions in size-limited materials is crucial for the development of a new genera-
tion of cheaper, compact and energy-efficient spintronics devices. In the work [14], carried out by 
V.Zawadzki on the magnetic oscillator of a two-dimensional electron gas, numerical calculations of 
the parameters of the GaAs sample have been provided, it has been shown that the diamagnetic 
moment fluctuates around zero depending on the magnetic field, and the paramagnetic and dia-
magnetic susceptibilities disappear in small areas for a two-dimensional electron gas. In [15], the 
main thermodynamic functions and the diamagnetic moment of the electron gas on the surface of 
a semiconductor nanotube were calculated at low temperature and in a weak magnetic field. Of 
special interest is the study of the dependence of the magnetic sensitivity on the magnetic field in 
semiconductor quantum wells with a parabolic potential.

The magnetic susceptibility for electron gas in large crystals was calculated by Yu.B. Rumer 
[16, 17]. In the given paper, the energy spectrum and wave functions have been calculated for the 
case when the magnetic field is parallel to the surface of the quantum well, as well as the depen-
dence of the density of electron states, reduced chemical potential, and magnetic susceptibility on 
the magnetic field in a quantum well located in parallel magnetic field has been investigated. The 
confinement potential of the two-dimensional electron gas is selected to be parabolic.

2.Theory

2.1. Energy spectrum and wave function of electrons in a quantum well located in a 
longitudinal magnetic field

One of the pressing issues is the calculation of the energy spectrum and the wave function of 
the electron gas in a quantum well [18, 19]. The most frequently used in practice are quantum 
wells based on GaAs / Al Ga Asx 1-x .  Quantum wells with a parabolic potential can be obtained by 
alternating layers GaAs  and Al Ga Asx 1-x   of different thicknesses in heterostructures. The rela-
tive thickness of the Al Ga Asx 1-x   layers should increase quadratically as they move away from the 
center of the well, and the thickness of the GaAs  layers should decrease. Typically, layers with a 
thickness of about 1 nm are used. In a relatively wide quantum well L 100 nm( ),   the potential 
can be created in the form of a parabola of depth ∆1,  limited by a height barrier D2  [19]. We will 
consider cases where the average electron energy ε   is less than the depth of the parabola  D1   .( )  
For the Fermi level, e f <D1   for a degenerate electron gas, and k T0 1D   for a non-degenerate 
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electron gas. Under these conditions, the electron confinement potential in the quantum well can 
be written as follows:

 U x m x( )= 1
2 0

2 2w    (1.1)

Where the x  axis is directed perpendicular to the electron gas layer; m is the effective mass of an elec-
tron in the conduction band; w0  is the frequency characterizing the parabolic potential in the conduc-

tion band and is determined from the condition D1
0
2 2

8
=

m Lxw .   Here Lx  is the quantum well width.

The single-particle Schrödinger equation can be written as follows

 p
m

p
m

p
m

x m xpx y z
c y

2 2 2
2 2

2 2 2
1
2

+ + + +
é

ë

ê
ê
ê

ù

û

ú
ú
ú

=w w eY Y   (1.2)

Here wc
eB
mc

=   is the cyclotron frequency of the electron, w w w= +0
2 2

c  is the “hybrid” frequency. 

Since the motion in the plane y z  is free, we will seek the solution of Eq. (1.2) as follows

 y j= ( )
+( )x e

i p y p zy z
  (1.3)

Here py z, =k ky z y z, ,,      are the components along the y and z  axis of the electron wave vector.
Substituting expression (1.3) into (1.2), we can obtain the following expressions for the energy 

eigenvalue and wave eigenfunctions, considering the spin of the Schrödinger equation [20]
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Here: s = ±
1
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  is the spin quantum number, g  is the effective g - factor of an electron in a crystal, 

mB  is the Bohr magneton, N  is the oscillatory quantum number, Ly  and Lz  are the lengths of the 
system in the y  and z directions.
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H xN ( )  is the Hermite polynomial [21].
2.2. Density of states of a two-dimensional electron gas in a parallel magnetic field
Such features as the oscillation of kinetic coefficients and negative magnetoresistance are as-

sociated with the density of states of a two-dimensional electron gas in a quantizing magnetic field. 
The density of states of a two-dimensional electron gas is directly determined by the following 
general expression
 g   ( )= -( )å

a

d 0  (2.1)

In expression (2.1), summation is carried out over all quantum numbers, including spin. d e( )  is the 
Dirac delta function. Using expression (1.4), if we pass from summation over ky  and  kz   to integra-
tion, then integration over kz   is easily done using the delta function
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Here
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If in expression (2.2) we pass from integration over ky  to integration over the center of oscillations 
x0   using the replacement

 k m xy
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0  (2.4)

then for the density of states we obtain:
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In expression (2.6), the upper limit of the integral  x m0( ), generally speaking, depends on N ,  ,s  

ε and Lx .  To determine x m0 , we take into account that the summation in expressions (2.5)-(2.6) is 
carried out over Landau oscillators x Lx
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Thus, if we consider expressions (2.8) and (2.9) in the expression for the density of states (2.5), 
then for the density of states we obtain the following expression:
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Here H x( )  is the Heaviside function [22]:
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It follows from the analysis of expression (2.10) that the density of states of an electron, when 
the magnetic field is parallel to the plane of the two-dimensional electron gas, does not consist of 
pure steps, as in the case of the absence of a magnetic field. Each time the electron energy is equal 
to the subband energy, the density of states changes abruptly with a finite step. Since the density 
of states at the previous level is non-zero, the density of states increases at each successive level.

In the majority of the cases studied in the experiment, the average electron energy ( )  satisfies 
the condition
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In this case, the second term in expression (2.10) for the density of electron states can be omitted, 
and g ( )   becomes a step function of   :
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Therefore, the density of states of a two-dimensional electron gas in a parallel magnetic field is a 
sawtooth function of the magnetic field at each given energy value.

2.3. Chemical potential of electrons in a quantum well
If we take the bottom of the quantum well as the energy reference point, then the number of 

electrons per unit surface in a two-dimensional electron gas is determined by the following expres-
sion:
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is the distribution function of electrons in the state of equilibrium (Fermi-Dirac distribution),  x   is 
the chemical potential of electrons. If we substitute the expression for the density of states (2.11) 
into (3.1), then for the surface density of electrons we obtain
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After integrating the resulting expression over energy and summing over the spin quantum 
number, we obtain
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The arbitrary degree of degeneracy of the two-dimensional electron gas and the chemical potential 
of electrons for an arbitrary magnetic field can be found from expression (3.4).

Below we examine special cases.
A. Nondegenerate electron gas. The condition of non-degeneracy of electrons in a quantum 

well f0 1( )( )   can be expressed as follows:

 - º - -h h0 2 2
1a b

  (3.6)

Let us consider that in this case  ln 1+( )»- -e ex xh h  and in (3.4) we restrict ourselves to summation 
over N  by the first term. This state is called the quantum limit state. Thus, for the chemical poten-
tial in the quantum limit state, we obtain:
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From expressions (3.6) and (3.7) we can find the temperature range that satisfies the condition 
of a nondegenerate electron gas for a given value of the electron surface density. For example, for 
GaAs  (when  m = 0 067,  , w =2,91meV [23]), in order for the electron gas to become nondegener-
ate h0 3£-( ), the following conditions must be satisfied: at surface density n T= ³-10 18 2  ,   sm K,   
at surface density n T= ³-10 89 2  ,    , sm K  and for n T= ≥−10 6010 2sm  K, .�

In the special case, if a b 1 1,  ,   (3.7) takes the following form:
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And for the condition a b 1 1,     for the chemical potential in a non-degenerate form, we 
obtain
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B. Strongly degenerate electron gas. Condition (3.6) is not satisfied for a degenerate electron 
gas. Then for a strongly degenerate electron gas:

 - º- +h0 2 2
1a b

  (3.10)

When this condition is met, one can be discarded in the argument of the logarithmic functions 

in expression (3.4) (which is equivalent to replacing the function -
¶
¶

æ

è
çççç

ö

ø
÷÷÷÷

f0


  with d x -( )),  and in this 

case, the chemical potential in any magnetic field can be calculated using the resulting expression. 
The analytical dependence of the chemical potential of the degenerate state on the magnetic field 
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then from expression (3.4) for the chemical potential we obtain:
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Here N L
0 2

1= -  is the number of the largest of the quantized levels of the oscillator below the 
chemical potential. When the chemical potential is between adjacent Landau levels, i.e. when
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Here L represents the total number of quantized sublevels below the chemical potential. For a given 
value of the surface density, the dependence of the energy of the N th Landau level on the magnetic 

field has the form N c+
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.   And  x( )B  weakly depends on the magnetic field, since, as 

can be seen from expressions (3.11) and (3.12), as the magnetic field increases, the first terms in-
crease, and the second terms decrease, so the changes partially compensate each other. Therefore, 
as the magnetic field increases, the quantized levels of the oscillator alternately cross the chemical 
potential and move from bottom to top. In this case, expressions (3.11) and (3.12) are alternately 

used for x(B). It is clear that for transitional values of h = +
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expressions (3.11) and (3.12) must coincide. (3.11) and (3.12) satisfy this condition, but it should be 
considered that when passing from (3.11) to (3.12) or vice versa (for transitional energies), L  must 
change by one unit. If we neglect the spin splitting b ®( )0 , then we can write a general expression 
for the chemical potential in the entire region of the magnetic field:
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Since the value of  g  in GaAs is small, the results obtained from expression (3.13) almost coincide 
with the results obtained from expressions (3.11) and (3.12). N0  is found from the following condi-
tion
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and through the chemical potential depends on the concentration and the magnetic field. Thus, us-
ing expressions (3.13) and (3.14), for N0  we obtain the following expression
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Here the integer part of the number x is denoted by xéë ùû .
For a given value of surface density, the value of the magnetic field at which the chemical potential 
crosses any (Nth) level is found from expression (3.13)
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It should be noted that in the strongly degenerate case, the chemical potential is above the 
0th Landau level for all values of the magnetic field, i.e. in (3.16) N ³1.  Even in the absence of a 
magnetic field, at surface densities n m

<
w

p
0



,  the chemical potential remains below the 1st Landau 
level, and the electrons are mostly at the 0th Landau level (quantum limit state). In this case, the 
chemical potential 

 x
w p w

w
B

m
n( )= +

 

2

2

0

   (3.17)
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2.4. Magnetic susceptibility in a quantum well of an electron gas in a quantizing 
magnetic field

Let us calculate the magnetic susceptibility of an electron gas in a quantum well with a para-
bolic potential located in a longitudinal magnetic field for the statistics of nondegenerate and de-
generate states.

A. Non-degenerate state. We will use a grand potential to calculate the magnetic susceptibil-
ity. It is known that the Gibbs thermodynamic potential

 W=- +
-æ

è

ççççç

ö

ø

÷÷÷÷÷

æ

è

ççççåk T
k TN k k

N k k

y z

y z

0
0

1
, , ,

, , ,

s

sx
ln exp



çç

ö

ø

÷÷÷÷÷÷
  (4.1)

Magnetic susceptibility [16]

 c
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B T M
B VB T T

,
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1 W  (4.2)

It is obviously that for the statistics of a nondegenerate state

 W=-nk T0   (4.3)
Here n is the surface density of electrons. Substituting expression (1.7) into (4.1) and proceeding to 
integration, from expression (4.2) we obtain the following expression
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  (4.4)

Here t bL
k T

erf tx= ( )
2

04
,   , is the integral of probabilities [24]. In addition, in expression (4.4) the fol-

lowing notation is used:

 n
w

n
m

h
x

= = =


2 20 0 0k T
g B

k T k Ts
B,   ,     (4.5)

Particularly, using the work [25] for InSb and GaAs, the dependences c B( )  have been estab-
lished. Here, assuming the well width Lx = 4000Е,  the height of the parabolic well D1 150=  meV, 
the electron mass m m= 0 067 0. ,  then for GaAs  we obtain w0

12 14 437 10= × -.   s  . It should be noted 

that in the absence of a magnetic field  D1
0
2 2

2 2
º ×

æ

è
çççç

ö

ø
÷÷÷÷÷

m Lxw   [23]. For an InSb crystal, respectively, 

m m= 0 016 0. ,  w0 7 5= ,   .meV  In addition, for InSb  and GaAs,  respectively, the concentration and 
Lande factor were chosen as:

 n g= × =-2 10 51 210 2  ; , ;  cm
 n g= × =--5 10 0 4410 2  ;   , .cm    
Figure 1 shows the dependence of c B( )  on the magnetic field for InSb  (curve 1) and GaAs�(curve 
2), respectively.

B. Degenerate state. For a typical Al Ga Asx 1-x   [25],  xm
0 xm

0  is the degree of filling of the well 

according to the upper limit of the integral; in the case of  F N
xb L

- <
æ

è
çççç

ö

ø
÷÷÷÷, ,s 2

2

 the result of inte-

gration does not depend on the width of the well and is p

b
 .  Otherwise, that is, in the case of 

 F N
xb L

- >
æ

è
çççç
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ø
÷÷÷÷, ,s 2

2

 the integration result depends on the well width Lx .   Since we are considering 
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the degenerate case, at given concentrations the Fermi level in the following formulas is much 

lower than b Lx

2

2æ

è
çççç

ö

ø
÷÷÷÷ .  Therefore, the magnetic susceptibility in the degenerate state has an oscilla-

tory character [26], changes nonmonotonically, and is written by the following formula:
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It is indicated z c F= =
w
w

h
w0 0

,   


. In a magnetic field, the formula for the concentration n, ex-

pressed in terms of the Fermi level, is as follows.
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Figure 2 shows the oscillatory dependence of the magnetic susceptibility ( χ ) on the magnetic 
field in InSb n =( )-1012 2cm  (curve 1) and GaAs  n = ×( )-5 1011 2cm  (curve 2) at T=4,2 K. In contrast 
to the non-degenerate state, the concentration has been increased in order to feel several oscilla-
tions more clearly. Since the spectroscopic  decay constant g for the InSb crystal is large, the jumps 
obtain a more nonsmooth character.

3.Conclusion
In order to substantiate the theory of thermodynamics and thermomagnetic kinetic phenomena 

of an electron gas in a parallel magnetic field in quantum wells with a parabolic confinement po-
tential, the energy spectrum and wave function of electrons have been determined, the function of 
the density of states of a two-dimensional electron gas located in a parallel magnetic field has been 
found, and it has been shown that it is a sawtooth function of the magnetic field, the magnetic sus-
ceptibility of the electron gas has been calculated for the statistics of nondegenerate and degenerate 
states. The dependence of the magnetic susceptibility on the magnetic field in the degenerate state 
has an oscillatory character, and its absolute values change abruptly. It has been shown that the 
crossing of the Fermi level by quantum levels located below the Fermi level with increasing mag-

Fig. 1 Dependence of the magnetic susceptibility 
c(B)  on the magnetic  field of InSb (curve 1) and 
GaAs (curve 2)

Fig. 2 Dependence of the magnetic susceptibility 
on the magnetic field of InSb (curve 1) and GaAs 
(curve 2) 
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netic field strength causes jump oscillations of the density of states, reduced chemical potential, 
and magnetic susceptibility.
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