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1.  Introduction
When describing internal structure of com-

plex discrete-like systems, topological tech-
niques are quite appropriate due to their uni-
versal applicability [1,2]. In particular, graph-
theoretic approaches cover many structural 
issues in nanophysics as well. There exists one 
nontrivial problem in the graph-theoretic char-
acterization of complex systems. It is a quan-
titative treatment of the so-called bipartivity 
and related nonbipartivity. The problem was 

clearly posed in [3] while some important pre-
liminary results were obtained earlier [4].

Recall that the graph bipartivity simply 
means that the graph possesses no odd-cycles. 
A direct count of odd-cycles is not trivial for 
large-scale networks, and various schemes 
were invented for analyzing bipartivity and 
nonbipartivity in quantitative terms (e.g., see 
references [5-9]). Recently, the nonbipartivity 
measures were also discussed for conjugated 
carbon-containing π-structures [10] (in the last 
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Простий топологічний індекс, що вимірює недводольність у нанокластерах. 
 А. В. Лузанов

Досліджено проблему квантифікації недводольності складних атомістичних структур, що 
розглядаються як графи. В простих термінах дводольність означає, відсутність у відповідному 
графі циклів непарної довжини. Базуючись на попередніх результатах (2021), ми пропонуємо 
топологічний індекс недводольності IAS. За допомогою останнього спектральна асиметрія 
графа трансформується у деяку розмірно узгоджену міру недводольності. Індекс IAS було 
протестовано й порівняно з іншими індексами недводольності. Отримано аналітичні 
результати щодо деяких типів графів (цикли, сонечко та колеса тощо). Центр уваги наших 
чисельних розрахунків становили нанокластери великого розміру (фулерени із сотнями 
атомів та графенові нанокластери з недводольними дефектами). Акцентовано, що саме 
розмірна узгодженість запровадженої міри IAS є принциповою в кількісному аналізові 
недводольності.
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appendix of loc. cit.). A quite simple approach 
has been given therein, but only few examples 
were presented. Thus, real possibilities of our 
approach remained unclear. The purpose of the 
paper is to elucidate these points by the extend-
ed graph-theoretic consideration of middle and 
large scale networks.

2. How to measure nonbipartivity
The simplest basic notions of graph theory 

are assumed to be familiar to the reader, and 
we only recall some specific terms. Considering 
any atomistic structure in the graph-theoretic 
terms, one treats atomic centers as graph ver-
tices, and interatomic bonds as graph edges. In 
this approach the basic is a graph adjacency 
matrix A with matrix elements Aij = 1 if verti-
ces  i and j are connected by an edge, otherwise 
Aij = 0. Notice that this definition is quite simi-
lar to that commonly defined in the Hueckel 
π-electron theory of conjugated carbon-contain-
ing systems (then (–A) is interpreted as the 
modeled one-electron Hamiltonian). Matrix A 
is frequently termed a topological matrix.

Likewise, the important graph-theoretic 
notion of bipartite graph has an analogous 
one in the Hueckel theory where the so-called 
alternant systems are defined [11]. Namely, 
the graph is bipartite (or two-coloring) if its 
vertices can be colored by two different colors 
in such a way that no neighboring (adjacent) 
vertices are colored identically. The strictly 
equivalent requirement is an absence of odd-
cycles in any bipartite graph and in alternant 
system respectively. Various formal definitions 
and corresponding algorithms were proposed 
for estimating the graph bipartivity and nonbi-
partivity (see review [9]). Here we focus on two 
popular approaches which are computationally 
relatively undemanding.

The first algorithm is based on a spectral 
analysis of the special matrix named the sign-
less Laplacian Q . Let us define the diagonal 
matrix D  in which the i-th diagonal element 
Dii  is equal to the number of neighboring ver-
tices of the i-th vertex (vertex degree). Then, by 
definition

 Q D A= + .  (1)
The remarkable property of Q  is that its 

smallest eigenvalue, mmin , is zero if and only if 
the connected graph is bipartite [4,12]. Thence, 
the deviation of mmin  from zero is a possible 
measure of nonbipartivity.

Another frequently used method which was 
given in [6], invokes only the A-spectrum, that 
is the adjacency matrix eigenvalues { }l j , where 
1£ £j N , and N  is a total number of vertices. 
The appropriate nonbipartivity measure can be 
written in the form of the following index: 
   I Tr[sinh(A)] / Tr[exp(A)]Estr =2  (2)
with exp(A)  and sinh( )A  being the standard 
matrix functions. This measure obeys the in-
equality: 0 1£ £IEstr , so the value IEstr =1  cor-
responds to maximally nonbipartite graphs. In 
[6] the corresponding bipartivity quantification 
scheme was motivated by a consistent random-
walk analysis on graphs. In our study we will 
explore primarily the new approach [10] where 
a spectral asymmetry of A is directly taken as 
the source of nonbipartivity measures.

3. Spectral asymmetry as  
a nonbipartivity measure

Seemingly, for bipartite systems the special 
symmetry of A-spectrum was first founded by 
Coulson and Rushbrooke in [11]. From their 
parity theorem we have the following symme-
try relation:
 l lj N j=- - +1 , (3)
that is applicable for all N eigenvalues l j  of A. 
This relation is strongly valid for bipartite sys-
tems only (theorem 2.3.4 in [12]). It suggests 
the idea [10] that an admissible nonbipartivity 
measure can be simply constructed in terms of 
individual spectral asymmetries. Let us denote 
by sj  the asymmetry contribution from the giv-
en l j . Explicitly, we set
 s l lj j N j= + - +| |1 ,   1£ £j N ,  (4)
so that s sj N j= - +1 . Next, we take all such sj  
with an equal weight, and it produces (up to a 
factor) the appropriate nonbipartivity measure 
proposed in [10]. Signifying this measure by 
IAS , we define:
 IAS =

£ £
å1

4
1

sj
j N

. (5)

In Eq. (5) a factor ¼ is included for conve-
nience (this will be seen below). Evidently, IAS
=0 if and only if the system under study is bi-
partite.

To verify the method let us take first the 
triangle graph C3 as a simplest nonbipartite 
structure. For this graph, the set {-1, -1, 2} is its 
A-spectrum, and {1, 1, 4} is its Q-matrix spec-
trum. Then, IAS = mmin =1 for C3. This fact al-
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lows us to adopt that by using the indexes IAS  
we evaluate nonbipartivity in “triangle units”. 
In Table 1 we present the results for some typi-
cal cyclic graphs.

To start we consider simple unicyclic graphs 
CN having N vertices (N = 3, 5 and 7 in Table 1). 
Furthermore, more sophisticated graphs are 
also studied here. These are the well-known Pe-
tersen graph (p. 225 in [13]), the Golumb graph, 
and the complete graphs K8 and K9. Recall that 
complete graph KN is the graph in which all N 
vertices are connected between themselves. Us-
ing the known A-spectrum of KN, ([14]. p. 115]) 
we find that IAS = = -mmin N 2 . It implies that 
the nonbipartivity is large, increasing linearly: 
I KAS[ ]N N® . It is a natural result which re-
flects an extremal nonbipartivity of KN having 
all possible odd-cyclic subgraphs. Notice that 
the identity IAS = mmin (as in the the above ex-
amples) is seldom valid.

Particularly, we see from Table 1 that even 
for elementary graphs such as CN the behav-
ior of different nonbipartivity indexes is quite 
distinctive. For instance, the Estr.. index falls 
off too quickly with increasing the cycle size. 
The mmin  measure also decreases, only more 
slowly, whereas the new IAS  index is indepen-
dent of the odd-cycle size. The Petersen graph 
again demonstrates the too low value of IEstr  
(even lesser than for C3). At the same time, 
rather large nonbipartivity measures should 
be expected intuitively in case of the intricate 
Petersen graph.

The above dissimilarity is partly rooted in 
a specific problem of size-consistency of nonbi-
partivity measures (for the size-consistency no-
tions see, e.g. [15,16]) . Really, mmin  and IEstr  
are size-intensive quantities (like ionization 
potentials). It means that these ones are the 
same for the given graph and for a ensemble 
of disconnected identical copies of the graph. 
Note that another possible index [9] is based 
on fraction l lmin max/ , namely, 1-| / |min maxl l , 
and it is also size-intensive. Unlike these three 
indexes, IAS  is actually the size-extensive (ad-
ditively separable) characteristic like total en-
ergy. More exactly, IAS  possesses only the ho-
mogeneous additivity related to ensembles of 
identical species. Then, IAS  and the both mmin  
and IEstr  measures are essentially distinct in 
their nature, and therefore the results given by 
IAS  and  the rest indexes are highly disparate. 
Judging from the above-given data, it seems 
that the IAS  measure can serve as a more suit-
able tool for comparable studies, especially in 
case of large-scale structures. Thus, in what 
follows we will focus mainly on investigating 
nonbipartivity by means of IAS , giving other 
indexes from time to time.

4. Cycle-based structures
We now describe more systematically the 

results obtained for several typical problems 
having the cyclic graph as a core subgraph. Let 
us return to the unicyclic graph CN  with ar-
bitrary N. In chemistry of conjugated systems, 
CN corresponds to cyclic polyenes for which 
many analytical results were produced. As will 
be seen below, the same is possible for topologi-
cal nonbipartivity indexes.

Due to the cyclic symmetry of CN , its well-
known A-spectrum is to be
 l pj N j N[ ] cos[ / ]C = 2 2 ,  0 1£ £ -j N . (6)
The Q-matrix spectrum for CN trivially fol-
lows from the A-spectrum, so that for any 
even N=2n, that is for bipartite cycle, one 
has mmin  = IAS  =0. In the case of odd-cycles 
(N=2n+1), we obtain m pmin ( cos[ / ])= -2 1 2 N , 
which for large N decreases as (r/N)2. Opposite 
to this, the equality
 IAS =1  (7)
is true for any odd-cycle, as can be anticipated 
from examples in Table 1.

Here, we only briefly sketch the proof of this 
nonevident identity. To this end, we need to re-
arrange the A-spectrum in Eq. (4) before using 

Table 1. Comparison between nonbipartiv-
ity measures IEstr , mmin , and IAS  for typical 
graphs.

Graph IEstr mmin IAS

C3 0.314 1 1
C5 0.108 0.382 1
C7 0.002 0.198 1

(Golumb)

0.526 1.316 1.874

(Petersen)

0.082 1 3

K8 0.982 6 6
K9 0.992 7 7
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the definition of .., Eq. (5). A suitable form of 
Eq. (5) for spectrum (6) is
 

IAS = + + - +
=
å
j

n
j n n j n

0
2 2 1 2 2 1|cos[ / ( ) cos[ ( )/ ( )]|p p

 (8)
By usual trigonometry we can rewrite it (up 

to a factor) in the form containing the standard 
sum of cosines of angles in arithmetic progres-
sion, and it lead us easily to Eq. (7). Stress that 
in terms of index IAS , any C2n+1 has the same 
nonbipartivity as the triangle C3. While this 
fact may seem surprising, it should be noted 
that the same constant value is assigned to 
all odd cycles in the known vertex frustration 
method [8]. In the latter, one identifies a nonbi-
partivity index with a minimal number of ver-
tices deleting which converts the given graph 
into a bipartite graph (for more results see the 
Appendix).

As the next step, consider one special (sun-
let) graph which has CN as a leading subgraph. 
The sunlet graph can be constructed by attach-
ing a single pendant vertex to each vertex on 
CN. We will name such the graphs by radialenes 
(as in chemistry) and denote them by RN. The 
radialene A-spectrum is known long ago [17]. 
By using this we find that the needed individ-
ual asymmetry contributions, Eq. (4), are the 
same as in CN, and the resulting expression 
for our nonbipartivity measure is immediately 
reduced to Eq. (8). Then, Eq. (7) giving for CN 
the N-independence of IAS  is also valid for RN . 
Similarly, the behavior of mmin  in the RN graphs 
almost reproduces that of CN , namely, with en-
larging N the mmin -nonbipartivity of radialenes 
decreases asymptotically as (p/N)2/2 .

Next, the prism graph, PN with 2N vertices 
has two subgraphs CN. The A-spectrum PN is 
simply computed, and can be represented in 
terms of Eq. (6) to be { [ ] , [ ] }l lj N j NC C+ -1 1  
(see [13], p. 306). However, these two eigenval-
ue subsets overlap considerably, and we could 
not obtain IAS  analytically. The numerical data 
are displayed in Table 2 where the results for 
the conventional wheel graph WN. are also in-
cluded.

In the wheel graph, each vertex of the as-
sociated CN-1 graph is linked to the central 
singleton graph K1. to form a counterpart of a 
spoked wheel. The main analytical results for 
WN are as follows [14]: the A-spectrum con-
tains the same A-eigenvalues as the subgraph 
CN-1 together with two additional numbers 
1 1+ -N  and 1 1- -N . Due to these two 

eigenvalues, Eq. (7) for small N is not valid be-
cause of intruding {1 1+ -N , 1 1- -N . } 
into spectrum { [ ]}l j NC -1 . With this, we have
 IAS = 2   (9)
for W4 (as in the formal case of two disconnect-
ed triangles), but lesser values for few subse-
quent wheel graphs up to W7 only. All further 
members of this series (W8 etc.) exactly follow 
Eq. (9) for W4. Thus, for the wheel graphs of not 
too small size the IAS  measure is equal again to 
the constant value, and, importantly, twice the 
IAS  value for CN. The fact that the nonbipartiv-
ity of wheel graphs is certainly larger than that 
of CN seems quite natural if applying intuitive 
reasoning. It is interesting that the vertex frus-
tration method in fact provides the same pic-
ture (see the Appendix).

It is also worth discuss the behavior of the 
mmin  measure in WN. As seen from Table 2, 
mmin  for W2n leads to almost the same values 
mmin =1  as for the one triangle. For odd wheel 
graphs W2n+1  Eq. (9) is exact for all n >7 . We 
see that by using .mmin ., one can underestimate 
the nonbipartivity even in comparably simple 
structures.

To conclude this section we briefly analyze 
the results obtained for the Moebius ladder, 
MN, with even N =2n. Recall that M2n is pro-
duced from the prism graph P2n by making one 
twist in a set of the edges which link two sub-
graphs Cn in P2n. It is also known that, unlike 
Cn , the Moebius ladder is bipartite only for odd 
n. Therefore we will work here only with the 
even n case. The A-spectrum of M2n was fre-
quently discussed, and a suitable representa-
tion is given in [13], p. 75. It allows us to yield 
the formally same expression for mmin  as for Cn 
(see the above text after Eq. (6)). But for IAS  
the simple result, Eq. (7), is not valid for M2n. It 
can be seen from the following numerical data 
for IAS  in M2n with n = 2,4,6,8, and 10, namely, 
2, 1.41, 1.28, 1.68, and 1.51, respectively. For 

Table 2.  Comparison between nonbipartivity 
measures mmin  and IAS  for prism and wheel 
graphs.

Prism mmin IAS
Wheel mmin IAS

P3 1 1 W4 2 2
P5 0.382 1.764 W5 1 1.238
P7 0.198 1.494 W6 1.382 1.831
P9 0.121 1.241 W7 1 1.646
P11 0.081 1.746 W8 1.198 2
P13 0.058 1.413 W9 1 2
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greater even n values, numerical variations 
slowly oscillate, and IAS  goes to 3/2. Summing 
this section, we may suggest that the proposed 
index IAS  can serve as a reliable tool for study-
ing nonbipartivity in arbitrarily complex sys-
tems.

5. Fullerenes and giant icosahedral 
structures

Fullerenes and related structures were ex-
tensively studied by various graph-theoretical 
approaches ([18-20] and many others), In par-
ticular, the quantitative bipartivity of fullerene 
structures was also discussed, e.g. in [21-23]. 
It is interesting to consider the same problem 
by invoking our nonbipartivity measure IAS , 
which, we recall, has a suitable size-dependence 
behavior like the graph energy. It is sensible to 
start with the Platonic and Archimedean solids 
which are the fullerene predecessors in classi-
cal geometry. The needed structural and geo-
metrical data were taken from [24,25].

Among the Platonic N-hedrons (polyhedra), 
only cube (N = 6) is bipartite. In Table 3 we 
present the numerical date for the rest N val-
ues: tetrahedron (Td), octahedron (Oh), icosa-
hedron (Ih), and dodecahedron (Ih[D]). These 
shorthands are used in the table. Just note that 
mmin  again underestimates the nonbipartivity, 
particularly in the case of icosahedron. The 
discrepancy is only strengthened in the Archi-
medean polyhedra, such as truncated dodeca-
hedron and others. The results for large-scale 

Archimedean solids and giant fullerenes are 
presented in Tables 4 and 5. For several basic 
structures from these tables it is possible to 
make comparison with the vertex frustration 
approach (see the Appendix).

When inspecting Table 4, it becomes seem-
ingly apparent that both the indexes, IEstr  
and mmin , are unsatisfactory for quantifying 
nonbipartivity in the Archimedean solids. The 
snub dodecahedron is a particularly striking 
example in this respect. In the case we have 
12 pentagons surrounded by 80 triangles, so 
no surprise that we obtain the very large IAS
= 16.6. At the same time, mmin  and IEstr  cannot 
provide the needed sharp nonbipartivity dis-
crimination, say, between the snub cube and 
snub dodecahedron.

Now we discuss the results of Table 5 for the 
fullerene family. In order to distinct N-atomic 
carbon fullerenes from N-cycles CN we will des-
ignate the first by symbol [CN]. In the graph-
theoretic terms any fullerene can be treated as 
a plane graph consisting of exactly 12 penta-
gons surrounded by hexagons. In case of the 
fully isolated 12 pentagons one should obtain 
the resulting IAS =12  because Eq. (7) is valid 
for the single pentagon. However, the behavior 
of even one pentagon in hexagonal (graphene-
like) domain is not simple (it will be considered 
in detail in the next section). For two pentagon 
substructures which are closely situated inside 
a small bipartite graphene flake, the total non-
bipartivity significantly decreases and attains 
nearly 0.85 (instead of being 2 for two discon-
nected cycles C5). No wonder that in the basic 
fullerene [C60] we have almost a trice smaller 
IAS  value than the simple additivity rule re-
quires.

Likewise, other middle-size fullerenes only 
slightly differ from [C60] in respect of nonbi-
partivity. For instance, the icosahedral [C80]  
is still less bipartite than [C60]. Judging from 
Table 5, just too large fullerenes ( [C500]  and 
larger ones) can attain IAS > 5 , that is not so 

Table 3. Nonbipartivity measures mmin  and 
IAS  for Platonic solids.

Solid N Faces IEstr mmin IAS

Th 4 4{3} 0.62 2 2
Oh 6 8{3} 0.68 2 2
Ih 12 20{3} 0.72 2.76 4

Ih[D] 20 12{5} 0.42 0.76 3

Table 4. Various nonbipartivity measures for Archimedean solids

Solid N Faces IEstr mmin IAS

Truncated Cube 24 8{3}+6{8} 0.28 1 3.56
Rhombicub-octahedron 24 8{3}+18{4} 0.28 1 3

Snub Cube 24 24{3}+6{4} 0.68 2.27 6.12
Snub Dodeca-hedron 60 80{3}+12{5} 0.66 2.44 16.58

Truncated Dodecahedron 60 20{3}+12{10} 0.28 1 8.24
Truncated Icosahedron 60 12{5}+20{6} 0.02 0.38 4.19
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great for structures involving 12 pentagons. 
Thus, in an average, the nonbipartivity of any 
pentagon in a hexagonal environment of (ap-
proximately) one hundred “bipartite” verti-
ces is markedly suppressed in giant fullerene 
structures with thousands carbon atoms.

In addition, the prefullerene structures 
shown in Figure 1 demonstrate a nontrivial 
behaviour of IAS  for six-linked pentagon struc-
tures. In this figure the first system [C30] is half 
the buckyball described in [26], and indepen-
dently within π-electron theories in [27] (under 
name “the Fuller dome”). Two other systems 
represent the realistic chemical substances re-
cently synthesized [28]. From the data given in 
Fig. 1 we see a non-monotonic variation of non-
bipartivity in the prefullerene series.

6. Bipartite domains  
with nonbipartite defect

Here we study numerically the above-men-
tioned problem how nonbipartivity varies when 
the given nonbipartite graph becomes a sub-

graph inside bipartite domain. As a suitable 
example modeling such situations we treat first 
the odd-cyclic subgraph Cn immersed into a suf-
ficiently large graphene-like graph (condensed-
hexagons). Specifically, we have investigated 
odd cycles Cn with n = ¸3 9 . In this problem, 
the odd cycles are surrounded by several, gen-
erally ν, coordination layers formed by hexa-
gons. The results for various ν and n values are 
displayed in Table 6. In Table 7 we show, in 
particular, the carbon-contained structure for 
ν=2 and n=5, that is the single pentagon defect 
encircled by two hexagons layers (the first clus-
ter [C45] in Table 7).

Inspecting Table 6 we see that IAS  mark-
edly differs from the starting unity value, Eq. 
(7). The influence of the bipartite environment 
can be negative, as well as positive, leading to 
roughly twice the initial unity value. Our expe-
rience shows that it is difficult to predict nonbi-
partivity variations even qualitatively. Table 7 
presents additional results for two pentagonal 
defects in small graphene domains (clusters 
[C64] and [C96]).

In this context, the interesting example is 
provided by the pentagonal defects which were 

Fig. 1.  Prefullerene carbon clusters modeled by the five pentagons linked via hexagons.

Table 5.  Nonbipartivity measure IAS  for 
fullerenes [CN]. The symmetry group is given 
in parenthesises.

Fullerene IAS
Fullerene IAS

[C60] (Ih) 4.19 [C320] (Ih) 4.72
]C70] (D5h) 3.87 [C500] (Ih) 5.50
]C76] (D2) 3.44 [C540] (Ih) 5.69
[C78] (D3) 3.36 [C720] (Ih) 5.62
[C80] (Ih) 3.91 [C740] (I) 5.68

[C180] (Ih) 4.47 [C860] (I) 5.60
[C240] (Ih) 4.63 [C980] (Ih) 5.64
[C260] (I) 4.55 [C1500] (Ih) 5.61

Table 6.  IAS  index for the single Cn defect 
(with n=3,5,7,9) inside nanographene formed 
by n  hexagon layers.

ν\ n 3 5 7 9

1 1.46 1,27 0.74 1.21

2 1.67 1.73 1.07 1.45

3 1.62 1.69 1.17 1.48

6 1.61 1.78 1.63 1.50

7 1.59 1.79 1.56 1.71
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studied quantum chemically in [29] for finite-
sized periacene structures (PA). In the cited 
work, the so-called (ia,jz) PA with i=j=7 were 
treated. After removing two carbon atoms (for 
doing carbon divacancy) the authors have pro-
duced the relaxed geometry of the structure 
with a defect (see the figure 1e in [29]). Their 
nanographene cluster included 116 carbon 
atoms involving the basic nonbipartite dipen-
tagon-octagon substructure (the latter is dis-
played as the first system [C14] in our Table 8). 
In Table 8, we also considered graph-theoreti-
cally more extended PA, [C494] and [C1030] 
systems with the same nonbipartite defect. For 
the studied systems, we again observe a non-
monotonic variation of the nonbipartivity even 
for surroundings with hundreds and thousand 
carbon atoms.

8. Conclusion
Summing up, we have characterized nonbi-

partivity of structurally complex systems by the 
new topological index IAS , Eqs. (4) and (5), de-
rived from a spectral asymmetry of correspond-
ing adjacency matrix. The IAS  index is in fact 
the size-extensive (like total energy) topological 
measure. It makes IAS  a suitable tool for com-
parable analysis among nonbipartite structures 
with basically different size. At the same time, 

many of existing bipartivity or nonbipartivity 
measures are not easy to be used for compari-
son aids because usually they possess a size-in-
tensivity, and may produce sharply decreased 
values with increasing size. By using IAS  we 
can reasonably treat nonbipartivity in large 
nanoclusters with up to thousand and more at-
oms as it shows the giant fullerenes in Table 5. 
Interestingly, the most fullerenes under study 
are rather similar as to their bipartivity, albeit 
many of them are much larger (yet more than 
ten times) than the reference [C60] structute. 
In the same fashion we also studied the related 
problem of nonbipartite defects inside modeled 
bipartite graphene-like lattices. The main con-
clusion we can made now is that additive in-
dexes, such as IAS  and the vertex frustration 
index [7], seem to be preferable. Nonetheless, 
the comparison between these additive mea-
sures (see the Appendix) demonstrates that it 
is hard to reach full quantitative agreement in de-
scribing nonbipartivity of complex systems.

Additional investigations should be made to 
elucidate some principal points. One of them is 
an origin of increasing and decreasing nonbi-
partivity in special bipartite domains surround-
ing nonbipartite defects (section 6). This and 
supplementary issues, e.g. exploring bipartiv-
ity in complex crystal-like structures (see [32]) 
and in the finite-size  frustrated spin magnets 
(as in [33]), are supposed to be scrutinized in 
future.

Appendix.  Comparison with the vertex 
frustration measure

Recall that in the vertex frustration (ver-
tex bipartization) approach [7,23,30] one must 
find, for the given graph, a minimal number 
IVF  of the graph vertices such that removing 
them makes the resulting graph bipartite. The 
method is very tricky to be performed gener-
ally, but the problem can be clearly tractable 
for some graph types. For instance, the result 

Table 8.  The IAS  index for the isolated nonbi-
partite defect [C14] and three large-scale PA 
graphene nanoclusters containing  the same 
defect.

Basic Structure Cluster IAS

[C14] 0.989

PA[7a,7z] [C116] 0.716
PA[15a,8z] [C494] 0.997

PA[21a,12z] [C1030] 1.016

Table 7.  Nonbipartivity measures mmin  and 
IAS  for the single and double pentagonal de-
fects (colored in red) inside small graphene 
nanoclusters.

Cluster mmin IAS

[C45]

0.052 1.729

[C64]

0.046 0.850

[C96]

0.046 0.998
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is evident for odd cycles: IVF  [CN]=1 for any odd 
N , that is the same as in Eq. (7). Simply ob-
tained summary data for IVF are as follows. In 
the notation of the main text, we have, for the 
cycle-based graph set {C2n+1, R2n+1, W2n+1, PN 
} the corresponding IVF  set is {1, 1, 2, 2}. In ad-
dition, IVF =3 for the both Golumn and Petersen 
graphs. In case of the Platonic solids {Td, Oh, 
Ih, Ih[D]} we obtain IVF = {2, 2, 6, 6}. Comparing 
the above with the respective data of Tables 1-3 
we observe the coincidence or a certain similar-
ity of the results. Furthermore, IVF  = IAS  =N-2 
for the complete graph KN . 

As the last examples of the close similarity 
between IVF  and IAS  indexes we shortly discuss 
our computations for the friendship and sun-
flower graphs (FN  and SfN  in usual notation). In 
case of the FN  graph we can use its A-spectrum 
from [31] that gives us  the full coincidence: 
IVF  = IAS  =1. The sunflower graph provides a 
more interesting situation. This graph can be 
derived from the wheel graph WN by attaching 
a single vertex sj to each vertex vj  of the CN 
subgraph of WN. In doing so one must link sj 
with vj  and vj+1 . Turning to the IVF  measure 
for SfN  we easily find IVF  for small N in SfN . 
Namely, I Sf I SfVF VF[ [ ] [ [ ]3 4 3= = , Generally we 
find that I Sf I SfVF 2n-1 VF 2n[ ] [ ]= = n . This means 
that for large N the IVF  index is linear in N:

  I SfVF[ ] /N N® 2 .  
It can be compared with the analogous IAS  re-

sults for small N : I Sf I SfAS AS[ [ ] [ [ ]3 4 3= = . For 
large N the numerical data are only available. 
They give us an approximate asymptotic which 
is linear in N. Namely, I SfAS[ [ ] .N N® 0 415  
that is sufficiently close to the above result for 
IVF.

All these facts are not accident because like 
IAS  the IVF  index is the additive, or more exact-
ly, additively separable measure, as stated by 
the Lemma 1 in [7]. It must be underlined that 
in our opinion the additivity property is war-
ranted when comparing nonbipartivity even 
between middle-size systems.

However, for fullerenes the IAS  and IVF  data 
do not provide a good concordance. According to 
[30], IVF  [C60]=12 ,and the same IVF  value is 
true for the related fullerene structures with 
N=12 (2n+1). Then, based on [30], one also has 
the high value IVF  =12 for [C180], [C540], and 
[C1500]. More than that, one can obtain the 
IVF  values markedly higher than those of the 
IAS  approach even for simple systems as the 

example of  the defect [C14] in Table 8 shows 
this: IVF [C14] =2. All this illustrates that it 
is difficult to uniquely and universally define 
the topological nonbipartivity in quantitative 
terms.
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