Exciton absorption spectrum of thin films of $(Cs_xK_{1-x})_2CuCl_3$ solid solutions

E.N. Kovalenko¹, O.N. Yunakova², N.N. Yunakov²

¹Kharkov National University of Radio Electronics, 14, Nauki Ave., Kharkiv 61166, Ukraine, ²Kharkiv National University, 4, Svobody Sq., Kharkiv 61022, Ukraine

Received December 12, 2024

The absorption spectra of thin films of $(Cs_xK_{1-x})_2CuCl_3 \quad 0 \le x \le 1$ (*T*=90K) solid solutions in the spectral range 2–6 eV were studied. According to the analysis of the spectra, the formation of two types of compounds was observed and studied: 1) compounds at *x*=0 and in the range of $0.4 \le x \le 1$ which are isostructural to Cs_2CuCl_3 and K_2CuCl_3 ; 2) compounds at *x*=0.2 which are isostructural to Cs_2CuCl_3 . The excitonic spectra of $(Cs_xK_{1-x})_2CuCl_3 \quad 0 \le x \le 1$ compounds are caused by transitions in the Cu⁺ ion. The linear concentration dependences of the spectral position of exciton bands in both types of compounds confirm the localization of excitons in sublattices containing Cu⁺ ions.

Keywords: thin films, absorption spectra, excitons.

Екситонний спектр поглинання тонких плівок твердих розчинів (CsxK_{1-x})₂CuCl₃. О.М. Коваленко, О.М. Юнакова, М.М. Юнаков

Досліджено спектри поглинання тонких плівок твердих розчинів (Cs_xK_{1-x})₂CuCl₃ $0 \le x \le 1$ (T=90K) в спектральному інтервалі 2–6 еВ. З аналізу спектрів встановлено утворення двох типів сполук: при x=0 та в інтервалі $0,4 \le x \le 1$ ізоструктурних Cs_2CuCl_3 та K_2CuCl_3 , а при x=0,2 утворюється сполука ізоструктурна $CsCu_2Cl_3$. Екситонні спектри сполук (Cs_xK_{1-x})₂CuCl₃ $0 \le x \le 1$ обумовлені переходами в іоні Cu⁺. Лінійні концентраційні залежності спектрального положення екситонних смуг в обох типах сполук підтверджують локалізацію екситонів в підгратках, що містять іони Cu⁺.

1 Introduction

Metal halide compounds with a perovskitelike structure are of interest to researchers due to their optoelectronic properties [1-6]. They are of interest as a material for solar cells, displays, lighting equipment, etc. Copper halide compounds with a perovskite structure are especially interesting [4,5], as a less toxic material compared to lead-based perovskites [1-3]. Copper perovskites with significantly different crystal lattice parameters [6] can serve as both good luminophores [4, 5] and materials for various optoelectronic devices. In this work, we study the absorption spectra of solid solutions of copper perovskites K_2CuCl_3 and Cs_2CuCl_3 . Only one compound, K_2CuCl_3 , with a stable absorption spectrum is formed in the KCl – CuCl system. This compound crystallizes into a perovskite-like orthorhombic lattice with parameters (space group P_{nma}) a=12.030, b=4.148 and c=12.587 Å [6]. The structural element of the K₂CuCl₃ crystal lattice is single chains of CuCl₄ tetrahedra, oriented along the short axis of the crystal.

According to a study of the absorption spectra of thin films $(CsCl)_{1-x}(CuCl)_x \ 0 \le x \le 1$ (*T*=90K), the formation of two compounds with a stable spectrum, $CsCu_2Cl_3$ and Cs_2CuCl_3 , was established in this concentration range [7]. Both compounds are non-hygroscopic. The

Functional materials, 31, 1, 2024

compound $CsCu_2Cl_3$ is resistant to the external environment [6-8], and Cs_2CuCl_3 is stable only in vacuum [7]. In air, Cs_2CuCl_3 apparently decomposes into $CsCu_2Cl_3$ with a disordered crystal lattice and CsCl [7]. The decomposition process of Cs_2CuCl_3 is slow. In this case, the Cs_2CuCl_3 films remain optically smooth and non-scattering. In terms of the structure of the spectrum and the position of absorption bands, the spectrum of Cs_2CuCl_3 thin films is close to the spectrum of K_2CuCl_3 thin films, which indicates that both compounds are isostructural [7]. Unlike Cs_2CuCl_3 , the absorption spectrum of K_2CuCl_3 thin films is stable when stored in an external environment, but the films become scattering over time.

In this work, the absorption spectra of thin films of $(Cs_xK_{1-x})_2CuCl_3$ solid solutions are studied in order to determine the possibility of obtaining compounds that are stable in the external environment.

2. Experimental

Thin films of $(Cs_xK_{1-x})_2CuCl_3$ $0 \le x \le 1$ were prepared using the same procedure as Cs₂CuCl₃ films [7]. A mixture of pure CsCl, KCl and CuCl powders of stoichiometric composition was preliminarily melted in a vacuum, then the melt of the mixture was evaporated at high temperature onto guartz substrates heated to 100°C, followed by annealing of the films for an hour at the same temperature. This method of producing thin films of ternary compounds is based on the fact that, as a rule, the melting point of ternary compounds is significantly lower than the melting point of the initial components [7,9]. The evaporation temperature of the melt was selected such that monophase films were obtained without admixtures of other phases of ternary compounds, for example, admixtures of the CsCu₂Cl₃ type phase. The evaporation temperature of the CsCu₂Cl₃ melt is significantly lower than the evaporation temperature of the Cs_2CuCl_3 [7], so the melt of the mixture of $(Cs_xK_{1-x})_2CuCl_3 0 \le x \le 1$ powders evaporated at a high temperature.

The phase composition of thin films $(Cs_xK_{1-x})_2CuCl_3 0 \le x \le 1$ and their quality were controlled by absorption spectra measured at *T*=90K. Such control is possible due to the qualitative difference in the absorption spectra of various compounds and the significant difference in the spectral position of long-wave exciton bands in the ternary compounds $CsCu_2Cl_3$ (4.33 eV), Cs_2CuCl_3 (4.84 eV), K_2CuCl_3 (4.7 eV)

and the initial components CsCl (7.8 eV), KCl (7.76 eV) and CuCl (3.3 eV). To study exciton absorption spectra, films with a stable spectrum for a given concentration x, and the narrowest and most intense absorption bands were selected.

Absorption spectra were measured in the spectral range 2-6 eV at T=90K on an SF-46 spectrophotometer. To measure the absorption spectra, films with a thickness of 250-300 nm were used.

The parameters of long-wave exciton bands (position E_m , half-width Γ and the value of the imaginary part of the dielectric constant at the maximum of the band $\varepsilon_{2m} = \varepsilon_2(E_m)$) were determined directly from the optical density spectrum $D = -\lg T$ by approximating the bands with two-oscillator and one-oscillator symmetrical contours, which are linear combination of Lorentzian and Gaussian contours. The parameters of the exciton bands (E_m , Γ and ε_{2m}) were found by best matching the experimental and calculated contours. During computer processing of the spectra in order to isolate excitonic bands and eliminate polariton effects, the calculated transmission T_p of samples was analyzed using the Airy formula, which takes into account Fresnel losses at the boundaries and light interference at a given film thickness t. The calculated transmittance T_p is a complex function of photon energy, thickness t, and optical constants n and k.

In the case of a Lorentz contour, the real $\varepsilon_1 = n^2 - k^2$ and imaginary $\varepsilon_2 = 2nk$ parts of the dielectric constant have the form

$$\begin{aligned} \varepsilon_1(\xi) &= \varepsilon_{\Phi} + \varepsilon_{2m} \xi / (1 + \xi^2) ,\\ \varepsilon_2(\xi) &= \varepsilon_{2m} / (1 + \xi^2) . \end{aligned} \tag{1}$$

In the case of a Gaussian contour

$$\varepsilon_{1}(\xi_{1}) = \varepsilon_{\Phi} + (2/\sqrt{\pi})\varepsilon_{2m} \exp(-\xi_{1}^{2}) \int_{0}^{5} \exp(x^{2}) dx ,$$

$$\varepsilon_{2}(\xi_{1}) = \varepsilon_{2m} \exp(-\xi_{1}^{2}) , \qquad (2)$$

where $\varepsilon_{2m} = \varepsilon_2(E_m)$, $\xi = (E_m - E) / \Gamma$, $\xi_1 = 2(\ln 2)^{1/2}(E_m - E) / \Gamma$, ε_{Φ} , is determined by the contribution to ε_1 due to short-wave optical transitions.

For a contour intermediate between Lorentzian and Gaussian, a linear combination was used

$$\epsilon_{1,2}(E) = (1 - \alpha)\epsilon_{1,2}^{L}(E) + \alpha\epsilon_{1,2}^{G}(E).$$
 (3)

With this approximation, the exciton band contour is close to the Voigt contour. The spectral position of the exciton band E_m , its half-

Functional materials, 31, 1, 2024

Compound	E_{mA} , eV	E_{mB} , eV	E_{mB1} , eV	E_{mC} , eV
K ₂ CuCl ₃	4.7		5.25	6,2
Cs ₂ CuCl ₃	4.84		5.51	6.1
(Cs _{0.2} K _{0.8}) ₂ CuCl ₃	4.33	4.64	5.08	6.1
CsCu ₂ Cl ₃	4.33	4.615	4.96	6.05

Table 1. Spectral position of absorption bands in compounds

width Γ and ε_{2m} are found by matching the measured optical density spectra at the long-wavelength slope of the bands with the calculated dependences.

3. Result and discussion

The absorption spectra of thin films of $(Cs_xK_{1-x})_2CuCl_3 0 \le x \le 1 (T=90K)$ solid solutions are shown in Fig. 1 and Fig. 2. The spectra of K₂CuCl₃ and Cs₂CuCl₃ are similar in structure and close in the position of absorption bands. The spectrum of K_2CuCl_3 thin films shows an intense long-wavelength exciton band A at 4.7 eV, a weak excitonic band B_1 at 5.25 eV, and an electronic band C at 6.2 eV. In Cs-₂CuCl₃, the intense long-wavelength exciton band A is located at 4.84 eV, the weak exciton band B_1 is at 5.51 eV, and the electronic band C is at 6.1 eV. The excitonic spectrum of both compounds is interpreted based on transitions in the Cu⁺ ion [7, 10]. As noted above, the structural element of the K_2CuCl_3 crystal lattice is single chains of $CuCl_4$ tetrahedra, oriented along the short axis of the crystal [6]. Cs₂CuCl₃ presumably has a similar structure [7]. Lowfrequency excitations of the free Cu⁺ ion correspond to the transition ${}^1S_0
ightarrow {}^1D_2.$ Whereas for the Cu⁺ ion, which is located in the center of the tetrahedron, ${}^{1}S_{0}$ goes to ${}^{1}A_{1}$ and the 5-fold degenerate state ${}^{1}D_{2}$ splits into levels ${}^{1}T_{2}$ and ${}^{1}E$. According to the selection rules for the local T_d group, optical transition to a lower level ${}^{1}T_{2}$ is allowed, but transition ${}^{1}A_{1} \rightarrow {}^{1}E$ is prohibited. Since the Cu⁺ ion is slightly displaced from the center of the tetrahedron in the lattices of the studied compounds [6], the local group decreases to C_{2v} . Under the influence of a weak axial intracrystalline field, the ban on ${}^{1}A_{1} \rightarrow {}^{1}E$ transition is partially lifted, and the level ${}^{1}T_{2}$ is split into components. Accordingly, the intense exciton band in K2CuCl3 and CS2CuCl3 corresponds to the transition ${}^{1}A_{1} \rightarrow {}^{1}T_{2}$, and the weak B_1 band corresponds to the transition ${}^{1}A_{1} \rightarrow {}^{1}E \ [\bar{7},10].$

Despite the isostructural nature of the absorption spectra of K_2CuCl_3 and Cs_2CuCl_3 , in the spectrum of $(Cs_xK_{1-x})_2CuCl_3$ (Fig. 1), even at a low impurity concentration Cs = 0.1, a weak A^{II} band appears in the long-wavelength region of the spectrum. And at *x*=0.2, the absorption spectrum of a thin film $(Cs_{0.2}K_{0.8})_2CuCl_3$ (Fig. 2a) becomes similar in structure to the spectrum of CsCu₂Cl₃ (Fig. 2b) and is close to it in the spectral position of the absorption bands (Table 1). The spectrum of $(Cs_{0.2}K_{0.8})_2CuCl_3$ exhibits two intense long-wavelength bands A^{II} at 3.33 eV and B^{II} at 4.64 eV, a weak B_1^{II} band at 5.08 eV, and a C^{II} band at 6.1 eV. The spectral position of absorption bands in CsCu₂Cl₃ is given in Table 1.

The spectrum of the compounds CsCu- $_2Cl_3$ and $(Cs_{0.2}K_{0.8})_2CuCl_3$ is more complex compared to K₂CuCl₃ and Cs₂CuCl₃ due to the more complex structure of their crystal lattices. CsCu₂Cl₃ crystallizes into an orthorhombic lattice (space group $C_{\rm mcm}$) with parameters a=9.5, b=11.89 and c=5.6 Å, z=4 [6]. The structural element of the CsCu₂Cl₃ crystal lattice is double chains of CuCl₄ tetrahedra oriented along the short axis of the crystal [6]. Additional interaction between CuCl₄ tetrahedra in the double chains of the CsCu₂Cl₃ and $(Cs_{0,2}K_{0,8})_2CuCl_3$ crystal lattices leads to a shift of excitonic bands to the low-frequency region of the spectrum and splitting into components [7, 11]. The appearance of intense excitonic B^{II} bands in both compounds is apparently associated with Davydov splitting of excitonic bands, which occurs during the interaction of single chains of $CuCl_4$ tetrahedra in a double chain [7, 11]. In this case, the position of the exciton bands is determined by the expression $E_{ex}^{\pm} = E_{ex}^{0} \pm \frac{1}{2}\Delta E_{D}$, where E_{ex}^{0} is the exciton excitation energy in a hypothetical single chain. The value of $\Delta E_D = E_{BII} - E_{AII} = 0.285$ eV and 0.31 eV in CsCu₂Cl₃ and (Cs_{0.2}K_{0.8})₂CuCl₃ , respectively.

It should be noted that the compound which is isostructural to $CsCu_2Cl_3$ is not formed in the

Fig.1. Absorption spectra of thin films of $(Cs_xK_{1-x})_2CuCl_3 \ 0 \le x \le 1$ solid solutions.

KCI - CuCI system. The isostructural CsCu_2Cl_3 compound in its pure form is formed only for the composition $(\text{Cs}_{0.2}\text{K}_{0.8})_2\text{CuCl}_3$. The CsCu_2Cl_3 type phase dominates in the absorption spectrum of $((\text{Cs}_x\text{K}_{1-x})_2\text{CuCl}_3 x=0.3 \text{ (Fig. 1)}, \text{ but an}$ admixture of the Cs_2CuCl_3 type phase starts appearing. This is indicated by the weakening of the long-wavelength A^{II} band and the increase in the intensity of the B band. Starting from x=0.4, the absorption spectra of $(\text{Cs}_x\text{K}_{1-x})_2\text{CuCl}_3$ solid solutions are similar to the spectrum of Cs_2CuCl_3 .

According to the analysis of the absorption spectra of thin films of solid solutions $(Cs_xK_{1-x})_2CuCl_3 \ 0 \le x \le 1$ (Fig. 1, Fig. 2), isostructural compounds Cs_2CuCl_3 and K_2CuCl_3 start forming at x=0 and in the range of $0.4 \le x \le 1$. Their excitonic spectra, so as the spectrum of Cs_2CuCl_3 and K_2CuCl_3 , are caused by transi-

Fig.2. Absorption spectrum of a thin film of $(Cs_{0.2}K_{0.8})_2CuCl_3$ (*a*) and $CsCu_2Cl_3$ (*b*).

tions in the Cu⁺ ion. Excitons in these compounds are localized in single chains of CuCl₄ tetrahedra. It should be noted that the spectra of solid solutions in the concentration range of $0.4 \le x \le 1$ are stable only when storing samples in a vacuum. In air, as well as in pure Cs₂CuCl₃, the compounds slowly decompose with the release of an isostructural CsCu₂Cl₃ phase. Unfortunately, the admixture of K ions did not lead to the stabilization of Cs₂CuCl₃ in the external environment. On the contrary, the admixture of Cs ions in K₂CuCl₃ contributes to the appearance of an impurity phase of the Cs- Cu_2Cl_3 -type in the samples $(Cs_xK_{1-x})_2CuCl$ with x=0.1 and x=0.3, whereas at x=0.2 a compound is formed which is isostructural to CsCu₂Cl₃.

Figure 3 shows the concentration dependences of the spectral position of long-wave exciton bands for different phases of compounds $(Cs_xK_{1-x})_2CuCl \ 0 \le x \le 1$. The concentration dependence of the spectral position of the long-wave exciton band A is linear in solid solutions $(Cs_xK_{1-x})_2CuCl_3 \ (x=0 \ \text{and} \ 0.4 \le x \le 1)$, which are

Functional materials, 31, 1, 2024

Fig.3. Concentration dependences of the spectral position of long-wave excitonic bands in thin films $(Cs_xK_{1-x})_2CuCl_3$ with a structure of the K₂CuCl₃-type (x=0 and $0.4 \le x \le 1$) $E_{mA}(x)$ (1) and with a structure of the CsCu₂Cl₃($0.1 \le x \le 0.3$) type $E_{mBII}(x)$ (2) and $E_{mAII}(x)$ (3).

isostructural to Cs_2CuCl_3 and K_2CuCl_3 (Fig. 3, section 1):

$$E_{mA}(x) = E_{mA}(0) + (dE_{mA} / dx)x, \quad (5)$$

where $E_{mA}(0) = 4.7 \pm 0.03$ eV, $dE_{mA} / dx = 0.15 \pm 0.05$ eV.

A phase of $CsCu_2Cl_3$ -type structure appears in the spectra of $(Cs_xK_{1-x})_2CuCl_3 \ 0.1 \le x \le 0.3$. The concentration course of the spectral position of the long-wave exciton bands A^{II} and B^{II} in this concentration range linearly converges to the spectral position of the corresponding bands in $CsCu_2Cl_3$ (Fig. 3, sections 2 and 3). Linear concentration dependences of the spectral position of exciton bands in solid solutions $(Cs_xK_{1-x})_2CuCl_3$ in both phases confirms the localization of excitons in the sublattice of compounds containing Cu^+ ions.

4. Conclusions

According to the analysis of the absorption spectra of thin films of $(Cs_xK_{1-x})_2CuCl_3 \quad 0 \le x \le 1$ solid solutions, the formation of compounds of isostructural Cs_2CuCl_3 and K_2CuCl_3 at x=0 and in the range of $0.4 \le x \le 1$ was established. Thin films of solid solutions are stable only in vacuum in the range of $0.4 \le x \le 1$. In air however, they slowly decompose with the release of a phase of the $CsCu_2Cl_3$ -type. Samples are two-

phase at x=0.1 and x=0.3, whereas at x=0.2 the $(Cs_xK_{1-x})_2CuCl_3$ is formed which is isostructural to $CsCu_2Cl_3$.

The excitonic spectra of $(Cs_xK_{1-x})_2CuCl_3$ $0 \le x \le 1$ compounds are caused by transitions in the Cu⁺ ion. In solid solutions of isostructural Cs_2CuCl_3 and K_2CuCl_3 (x=0 and $0.4 \le x \le 1$), excitons are localized in single chains of CuCl_4 tetrahedra. In $(Cs_{0.2}K_{0.8})_2CuCl_3$, excitons are localized in double chains of CuCl_4 tetrahedra, which causes a more complex spectrum of the compound due to Davydov splitting of excitonic bands, which occurs when single chains of CuCl_4 tetrahedra interact in a double chain.

Linear concentration dependences of the spectral position of exciton bands in both phases of $(Cs_xK_{1-x})_2CuCl_3$ solid solutions confirm the localization of excitons in the sublattice of compounds containing Cu^+ ions.

References

- K. Fatima, M.I. Haider, A. Bashir, Z. Akhter, M. Sultan, *Physica E: Low-Dimensional Systems* and Nanostructures, **142**, 115265 (2022).
- P. Gong, F. Liang, L. Kang, Z. Lin, *Chemistry* of Materials, 34, №11, 5301(2022).
- A.S. Sadhu, Y.-M. Huang, L.-Y. Chen,H.-C. Kuo, C.-C.Lin, *Nanomaterials*, 12, №6, 985 (2022).
- W. Gao, L. Yin, J.-H. Yuan, K.-H. Xue, G. Niu, B. Yang, Q. Hu, X. Liu, J. Tang, Organic Electronics, 86, 105903(2020).
- R. Roccanova, A. Yangui, H. Nhalil, H. Shi, M.-H. Du, B. Saparov, ACS Appl. Electron. Mater., 1, №3, 269 (2019).
- S. Hull, P. Berastegui, J. Solid State Chem., 177, №9, 3156 (2004).
- E.N. Kovalenko , O. N. Yunakova, N.N. Yunakov, *Low Temperature Physics*, 49, No. 10, 1190 (2023).
- G. Meier, Z. Anorg. Allg. Chem., 515, 127 (1984).
- E.N. Kovalenko , O. N. Yunakova, N.N. Yunakov, Low Temperature Physics, 47, No.5, 462 (2021).
- K. Edamatsu, T. Nanba, M. Ikezawa, Journal of Physical Society of Japan 58, 301 (1989).
- V.K. Miloslavsky, E.N. Kovalenko, O.N. Yunakova, Opt. and Spectrosc., 84, №6, 940 (1998).