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In this paper, the stationary three-dimensional (3D) magnetohydrodynamic Casson flow of 
a nanofluid containing dust particles over a porous, linearly stretching sheet is considered. The 
sheet is assumed to be stretched in both directions along the xy plane. The nanofluid is pre-
sented as a suspension of water-based nanoparticles. In this study, we investigate the effects 
of nanoparticle size and inter-particle distance factors on the properties of the nanofluid flow. 
The mathematical model contains the basic equations in the form of three-dimensional partial 
differential equations for the fluid and dust phases, and these equations are transformed into 
dimensionless ordinary-dimensional equations using an appropriate similarity transformation. 
Exact analytical solutions to this boundary value problem are obtained. The effects of various 
physical values on dust and nanofluid velocities are discussed in detail, including the magnetic 
parameter, Casson parameter, porosity parameter, fluid-particle interaction parameter, mass 
concentration of dust particles, and nanoparticle size. The current analytical solutions show 
good agreement with previously published numerical investigations in a few particular cases.

Keywords: MHD Casson flow, nanofluid, dust particles, nanoparticle size, stretching sheet, 
analytical solutions.

Тривимірне магнітогідродинамічне течія Кессона пильової нанорідини над 
пористим листом, що розтягується: точні рішення. М. Й. Копп, В. В. Яновський.

У цій роботі розглядається стаціонарна тривимірна (3D) магнітогідродинамічна течія 
Кассона нанорідини, що містить пилові частинки, над пористим листом, що лінійно 
розтягується. Передбачається, що лист розтягнутий в обох напрямках вздовж площини xy. 
Основні рівняння двофазної моделі є рівняннями в часткових похідних, які перетворюються 
на звичайні рівняння з використанням перетворень подібності. Нанорідина представлена 
як суспензія наночастинок на водній основі. У цій роботі ми досліджуємо вплив розміру 
наночастинок та факторів відстані між частинками на властивості потоку нанорідини. 
Отримано точні аналітичні рішення цієї крайової задачі. Детально обговорюється 
вплив різних фізичних величин на швидкість пилу та нанорідкості, включаючи 
магнітний параметр, параметр Кессона, параметр пористості, параметр взаємодії 
рідина-частинка, масову концентрацію пилових частинок та розмір наночастинок.
Отримані аналітичні рішення показують гарну згоду з чисельними результатами 
раніше опублікованих робіт.
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1. Introduction

The problem of the boundary flow of non-Newtonian dusty fluids has attracted more and more atten-
tion during the past decades. A two-phase medium made up of a continuous fluid and a discrete (solid)
phase of particles is called a "dusty fluid whether it is Newtonian or non-Newtonian. Dusty fluid flows
have been observed in processes such as oil transportation, wastewater treatment, nuclear reactor cooling,
powder technology, paint spraying, solid propellant nozzles, and guided missile ejections. Since crude oil
is produced in the pores of reservoir rocks, the flow of fluid through the porous medium has become an
important issue. The above phenomena stimulated researchers to consider the issues of modeling, solving,
and analysing the flow of dusty fluids. As a result, new combined fluid models with different rheological
characteristics have appeared, such as, for example, the dusty Casson nanofluid, which make it possible
to effectively describe complex technological processes.

Saffman [1] was the first to study the laminar flow of a dusty Newtonian fluid. Chakrabarti [2] inves-
tigated the flow of dusty gas at the boundary layer. Datta and Mishra [3] discussed the flow of a dusty
liquid across a semi-infinite plate. Numerous technical applications, including those for reactor cooling,
power generators, magnetohydrodynamic (MHD) pumps, the oil industry, and heat exchanger design,
make the study of MHD flow crucial. MHD flows also have a significant impact on metrology, the motion
of the earth’s core, astronomy, solar physics, and geophysics. Many researchers started looking into the
hydromagnetic fluxes of a dusty fluid because of the importance of the MHD flow.

One of the earliest studies on boundary layer flow on solid surfaces was done by Sakiadis [4] and
Tsou et al. [5]. For a two-dimensional stationary flow in a boundary layer produced by an expanding
surface, Crane [6] obtained an analytical solution. These publications [4]-[6] inspired many researchers to
study various aspects of this problem, taking into account heat and mass transfer, MHD effects, chemical
processes, suction/injection, mass transpiration, non-Newtonian fluids, and other situations. Due to the
wide range of applications, studies on the two-dimensional boundary layer flow generated by stretching
surfaces are extensively conducted with different fluids under varying situations. This topic has been
the subject of a significant number of papers for a very long time. As a result, the studies that discuss
three-dimensional MHD flows of a non-Newtonian (Casson) fluid over a stretched surface will be the main
focus of the review section of this study. In the Casson viscous fluid flow model, the shear stresses are
greater than the yield strength. If the shear stresses are less than the yield strength, then the Casson
fluid behaves like a solid. Casson’s fluid is commonly found in the food industry, where products such
as jellies, tomato sauce, honey, and concentrated fruit juices are produced. In medicine, human blood
has the properties of Casson’s fluid. The flow of a viscous fluid over a surface that is either stretched
or compressed is important for a variety of processes, such as the production of glass, fiber, plastic, and
rubber materials and the melting of high-molecular-weight polymers. Wang [7] obtained an exact similar-
ity solution of the Navier-Stokes equations for a three-dimensional flow of a boundary layer of a viscous
fluid over a flat surface that is stretched with a linear velocity in two lateral directions. The concepts
presented in this paper provided inspiration for the study of three-dimensional flows under more complex
physical circumstances. The problem of steady laminar three-dimensional MHD boundary layer flow and
heat transfer over a stretching surface in a viscoelastic fluid was investigated by Ahmad and Nazar [8].
They obtained coupled non-linear ordinary differential equations to describe the flow, which they solved
numerically using the finite difference scheme known as the Kellerbox method.

A colloidal suspension of a nanoscale particle in a basic fluid is known as a "nanofluid"[9]. Metals,
oxides, carbides, and carbon nanotubes are among the most commonly used nanoparticles, with water
and ethylene glycol serving as the base fluids. For the effective transmission of thermal energy, nanofluids
have a higher thermal conductivity than ordinary fluids. A suspension of nanosized particles can affect the
viscous and rheological properties of a nanofluid since an increase in the volume fraction of nanoparticles
increases the dynamic viscosity.

Ramzan et al. [10] investigated the three-dimensional flow of a viscoelastic fluid, taking into account
the Soret and Dufour effects. In [10], solution expressions of velocity, temperature and nanoparticle con-
centration are computed via homotopy analysis method (HAM). Ashraf et al. [11] considered the heat
and mass transfer effects in the three-dimensional flow of a Maxwell fluid over a stretching surface with
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convective boundary conditions. Nadeem et al. [12] investigated the Casson fluid flow on a permeable
sheet caused by sheet stretching in the x and y directions in a transverse magnetic field. In a later study,
Nadeem et al. [13] extended the study to a Casson nanofluid over a linearly stretching sheet, taking into
account surface convective conditions. Mahanta and Shaw [14] investigated a three-dimensional Casson
fluid flow past a porous linearly stretching sheet, introducing a convective boundary condition at the
surface where the fluid’s thermal conductivity varies linearly concerning temperature. They used the
Spectral Relaxation Method (SRM) to solve the governing equations, and computations were performed
for the velocity and temperature fields for different parameters. Krishna [15] solved MHD Casson flu-
id flow past a porous, linearly stretching surface with wall mass transfer analytically. In [15] the fluid
velocity and skin friction coefficient were calculated, and it was demonstrated that increasing the Cas-
son and porosity parameters suppressed the velocity field. Madhusudan et al. [16] numerically studied
the convective, three-dimensional, electrically conducting Casson nanofluid flow over an exponentially
stretching sheet embedded in a saturated porous medium and subjected to thermal as well as solute slip
in the presence of an externally applied transverse magnetic field. Ibrahim and Anbessa [17] investigated
the three-dimensional MHD mixed convection flow of Casson nanofluid over an exponentially stretching
sheet using the impacts of Hall and ion slip currents, taking into account thermal radiation and the heat
source.

According to the reviewed literatures above, numerical solutions provide the foundation for most in-
vestigations. The advantage of an exact analytical solution is that it can explain the physics of fluid flow.
The correct response may also be used as a starting point for additional numerical and approximative
investigations.

Jalil et al. [18] gave an exact analytical solution for the MHD boundary flow of a dusty liquid over an
extension surface. The mathematical methodology used in [18] consists of transforming the basic equa-
tions into a self-similar form using known similarity transformations. The coupled equations are then
analytically solved using Crane’s [6] solution as a guide. Vishalakshi et al. [19] obtained exact analytical
solutions for the three-dimensional flow of a non-Newtonian fluid due to a porous stretching/shrinking
sheet. The importance of paper [19] is to examine the problem analytically and find the domain in terms of
mass transpiration that is used in the heat transfer equation to analyze the heat equation. Mahabaleshwar
et al. [20] conducted an investigation of the exact analytical solution for velocity and concentration field
for 3D MHD flow viscoelastic hybrid nanofluid due to a porous sheet that stretched/shrunk along both x

and y axes with linear velocity and Navier slip. Exact analytical solutions in exponential and hypergeo-
metric form for velocity and concentration fields were obtained in [20]. The flow of Marangoni convection
MHD Casson fluid with carbon nanotubes under the effects of transpiration and radiation was analyzed by
Vishalakshi et al. [21]. The ordinary differential equations (ODEs) obtained in [21] are solved analytically,
first using the momentum equation to obtain the solution domain, and then using this domain, the energy
equation is solved to obtain the temperature profile in terms of the Laguerre polynomial. Recently, Khan
et al. [22] found an exact solution of a Casson fluid flow induced by dust particles with hybrid nanofluid
over a stretching sheet under a Lorentz force. They obtained the analytical solutions of momentum equa-
tions for the fluid and dust phases velocities of the normal nanofluid (Fe3O4/H2O) and hybrid nanofluid
(Fe3O4-MWCNT/H2O). Kopp et al. [23] was obtained the analytical solution of the three-dimensional
MHD flow of the Casson ternary hybrid nanofluid over a linearly deformable surface with the effect of
mass transpiration. The authors [23] considered several variants of linear stretching/shrinking sheets in
the lateral directions x and y. They found that for the cases of stretching/streching, stretching/shrinking,
and shrinking/stretching sheets, the absolute values of the skin friction coefficients −f ′′(0) and −g′′(0)

decreased with an increase in the volume fraction of less dense nanoparticles. However, in the case of a
shrinking/shrinking sheet, the absolute values of skin friction coefficients −f ′′(0) and −g′′(0) increased
with an increase in the volume fraction of less dense nanoparticles.

The above review of the literature showed that most studies are based on finding numerical as well as
approximate solutions. The search for exact analytical solutions is associated with difficulties due to the
nonlinearity of the coupled differential equations. Unlike the previous analytical works [18],[22],[23] this
work is devoted to an analytical study of the three-dimensional MHD Casson flow of a dusty nanofluid
due to stretching of a porous surface. In this study, we will apply a methodology based on Crane’s exact
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analytical solutions. In addition, the novelty of this study is to explain how the size of nanoparticles
affects the properties of a dusty nanofluid flow. Using various physical parameters, an exact check of the
problem is performed, and velocity profiles and skin friction coefficients in the x and y directions are
studied.

2. Mathematical formulation of the problem

Consider a stationary, three-dimensional, incompressible, laminar flow of a Casson nanofluid contain-
ing dust particles in two lateral directions over a linearly stretching sheet. The nanofluid includes solid
copper nanoparticles and water as the base fluid. It is assumed that dust particles have a spherical shape,
uniform size, and constant density. Fig. 1 shows the conceptual flow configuration of the nanofluid and
dust particles of the problem under consideration. A constant magnetic field B0 is applied in the direction
normal to the fluid flow. The magnetic Reynolds number is assumed to be small, so the induced magnetic
field is neglected. Let Uw = ax and Vw = by represent the fluid velocity along the stretching sheet in the
x and y directions, where a and b are constants. An isotropic, incompressible Casson fluid’s rheological
equation has the following structure (see, for example, [14]):

τij =



2
(
µ+

Py√
2π

)
eij , π > πc

2
(
µ+

Py√
2πc

)
eij , π < πc

(1)

eij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
,

where τij is the (i, j)th component of the stress tensor, µ is the dynamic viscosity of a viscoplastic flu-
id, Py is the yield stress of the fluid, π = eijeij is the product of the component of deformation rate
with itself, eij is the (i, j)th component of deformation rate, and πc is the critical value of π depends on
non-Newtonian model.

The governing equations for the flow and dusty fluid under the aforementioned assumptions are as
follows:
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For the dust phase:
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where (u, v, w) and (up, vp, wp) are the velocities of nanofluid and dust particles along the x, y, and z-
directions. Next, ρnf , µnf , σnf are the density, dynamic viscosity, and electrical conductivity of nanofluid,
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Fig.1. Schematic diagram for the three-dimensional flow problem.

respectively. Λ is the Casson (non-Newtonian) fluid parameter, �k is the permeability of a porous medium,
B0 is the magnetic induction. K = 6πµfr is Stokes drag constant, r – radius of dust particles, N and ρp
are the dust particle number and the density of the dust particle, respectively.

We take into consideration the following slip boundary conditions for the flow under investigation:

u = Uw, v = Vw, w = 0 at z = 0 (8)

u = up → 0, v = vp → 0, w = wp at z → ∞ (9)

The relationship between the dynamic viscosities, densities, and electrical conductivities of the nanoflu-
id and the base fluid are determined according to the works [24]
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) (12)

where ϕs is the nanoparticle concentration, dn depicts the nanoparticle’s diametr, and h is the inter-
particle distance. Next, ρf is the base fluid density, ρs is density of nanoparticle, σf depicts the electric
conductance of the base fluid, and σs is the electric conductance of nanoparticle. Table 2 shows the physi-
cal characteristics of some types of nanofluids. To make the analysis simpler, the similarity transformation
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respectively. Λ is the Casson (non-Newtonian) fluid parameter, �k is the permeability of a porous medium,
B0 is the magnetic induction. K = 6πµfr is Stokes drag constant, r – radius of dust particles, N and ρp
are the dust particle number and the density of the dust particle, respectively.

We take into consideration the following slip boundary conditions for the flow under investigation:

u = Uw, v = Vw, w = 0 at z = 0 (8)

u = up → 0, v = vp → 0, w = wp at z → ∞ (9)

The relationship between the dynamic viscosities, densities, and electrical conductivities of the nanoflu-
id and the base fluid are determined according to the works [24]
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where ϕs is the nanoparticle concentration, dn depicts the nanoparticle’s diametr, and h is the inter-
particle distance. Next, ρf is the base fluid density, ρs is density of nanoparticle, σf depicts the electric
conductance of the base fluid, and σs is the electric conductance of nanoparticle. Table 2 shows the physi-
cal characteristics of some types of nanofluids. To make the analysis simpler, the similarity transformation

Table 1. Physical properties of the nanoparticles and the base fluid.

Property H2O Al2O3

ρ[kg ·m−3] 997.1 3970

σ[S ·m−1] 5.5 · 10−6 5.96 · 107

listed below is used
u = axf ′(η), up = axF ′(η), v = ayg′(η), vp = ayG′(η),

w = −√
aνf (f(η) + g(η)), wp = −√

aνf (F (η) +G(η)), η = z

√
a

νf
, (13)

where f, g, F,G are the dimensionless functions, η is the similarity variable, νf is the kinematic viscosity
of the base fluid. Primes denote differentiation with regard to η in this context. Equations (3)-(4) and
(6)-(7) are converted into dimensionless ODEs using Eqs. (10)-(13), and the continuity equations (2) and
(5) is automatically satisfied by using Eq. (13). Then, equations for the fluid and dust phases (3)-(4) and
(6)-(7) are reduced to the following equations:

(
1 +

1

Λ

)
ϵ1
ϵ2

f ′′′ + (f + g)f ′′ − f ′2 −
(
ϵ3
ϵ2
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(F ′ − f ′) = 0 (14)

(
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2 −
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)
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ϵ2
(G′ − g′) = 0 (15)

F ′2 − (F +G)F ′′ − βv(f
′ − F ′) = 0 (16)

G′2 − (F +G)G′′ − βv(g
′ −G′) = 0 (17)

where

M =
B2

0σf

aρf
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νf

a�k , βv =
KN

aρp
, l =

ρp
ρf

.

The magnetic parameter, porosity parameter, momentum dust parameter, and mass concentration of
dust particles, respectively, are designated by the dimensionless parameters M, �K,βv, and l. By applying
Eq. (13) to Eqs. (8)-(9), dimensionless boundary constraints are obtained.

f(0) = 0, f ′(0) = 1, g(0) = 0, g′(0) = c at η = 0 (18)

f ′(η) → 0, g(η) → 0, f(η) → F (η), g(η) → G(η) at η → ∞ (19)

where c = b/a is stretching ratio parameter.
To solve a number of engineering problems, it is necessary to estimate the value of the skin friction

coefficient. Skin friction is important in calculating surface drag. The local skin friction coefficients in the
x and y directions are given by [14]:

Cfx =
τwx

ρfU2
w

, Cfy =
τwy

ρfU2
w

, (20)

where τw is the wall shear stress. The wall shear stresses along the x and y directions are denoted by

τwx = µnf

(
1 +
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)(
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)(
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)
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.

Thus, the skin friction coefficients Cf along the x and y axes are expressed as follows:
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√
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(
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)
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)(y

x

)
g′′(0), (21)

where Rex = Uwx/νf is the local Reynolds number.
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3. Method of solution

This section explains a method for locating precise nonlinear solutions for the fluid and dust phases
(14)-(17) that are related to the boundary conditions (18)-(19). Based on Crane’s [6] solution, we suggest
that the general solution of equations (14)-(17) can be found in the exponential form:

f(η) = A1 +A2e
−βη, g(η) = A3 +A4e

−βη,

F (η) = A5 +A6e
−βη, G(η) = A7 + cA8e

−βη, (22)

where A1, A2, A3, A4, A5, A6, A7, A8 are the arbitrary constants. Applying boundary conditions (18)-(19)
to solutions (22), we obtain expressions for the coefficients:

A1 =
1

β
, A2 = − 1

β
, A3 =

c

β
,

A4 = − c

β
, A5 = A1 =

1

β
, A7 = A3 =

c

β
. (23)

The coefficients A6 and A8 are then determined by inserting solutions (22) and (23) into equations
(14)-(15). As a result, we obtain the following equation for A6 and A8:

(1− c)
(
α1β

2 − 1− c− α2 − α3

)
− α3β(A6 − cA8) = 0, (24)

where
α1 =

(
1 +

1

Λ

)
ϵ1
ϵ2
, α2 =

ϵ3
ϵ2
M +

ϵ1
ϵ2

�K, α3 =
βvl

ϵ2
.

Substituting solutions (22)-(23) into equations (16)-(17), we get

A6 − cA8 = − βv(1− c)

β(1 + c+ βv)
, (25)

here
A6 = − βv

β(1 + βv)
, cA8 = − cβv(2 + βv)

β(1 + βv)(1 + c+ βv)
.

From expressions (24) and (25), one can easily find the value β:

β = ±

√
1

α1

(
1 + c+ α2 + α3 −

α3βv

1 + c+ βv

)
(26)

Obviously, only positive real values of β > 0 are required. In the case of a two-dimensional steady flow
c → 0 expressions (25) and (26) coincide with the paper’s [22] results.

Finally, we obtain the final form of exact analytical solutions for the fluid and dust phases by substi-
tuting the values of the coefficients from (25) and (26) into expressions (22):

f(η) =
1

β
(1− e−βη), g(η) =

c

β

(
1− e−βη

)
,

F (η) =
1

β

(
1− βve

−βη

1 + βv

)
,

G(η) =
c

β

(
1− βv(2 + βv)e

−βη

(1 + βv)(1 + c+ βv)

)
. (27)

By differentiating expressions (27) with respect to η, we can determine the velocity profiles in the x and
y directions for the fluid and dust phases:

f ′(η) = e−βη, g′(η) = ce−βη, F ′(η) =
βve

−βη

1 + βv
,
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G′(η) =
cβv(2 + βv)e

−βη

(1 + βv)(1 + c+ βv)
. (28)

Differentiating expressions (28) by variable η yields the expressions −f ′′(0) and −g′′(0), which are con-
sidered necessary for calculating fluid phase skin friction coefficients in both lateral directions:

−f ′′(0) = β, −g′′(0) = cβ. (29)

4. Results and discussion

In this section, we discuss the results obtained from the analytical solution (26)-(29) for the steady
flow of a nanofluid and (Al2O3-H2O) dust particles in both lateral directions. The effects of the non-
Newtonian (Cassonian) parameter Λ, the magnetic parameter M , the porosity parameter �K, the fluid
particle interaction parameter βv, and the mass concentration of dust particles l, and nanoparticle size
dn on nanofluid velocity profiles f(η), g(η), and dust velocity profiles F (η), G(η) are depicted in Figs. 2-7.
For calculations, the range of variations of the following variables is considered:

Λ = (1, 3,∞), M = (0.5, 1.5, 2.5), �K = (0.5, 1.5, 2.5),

βv = (0.3, 0.5, 1), l = (2, 3, 4), dn = (0.2, 1.2, 2.2),

c = 0.5, ϕs = 0.05, h = 1.

The effects of Λ,M and �K on the fluid and dust phase velocities of nanofluid Al2O3-H2O are shown in
Figs. 2-4. These figures depict that as the values of the parameters Λ,M and �K increase, the velocities
of the fluid and dust phases decrease. The physical meaning of the tempo deceleration demonstrated in
Fig. 2 is to increase the plastic dynamic viscosity as Λ values increase, creating resistance to the flowing
fluid.

A similar behaviour of velocity profiles can be seen in Fig. 3. Since the Lorentz force increases with
the value of the magnetic parameter M , we observe that there is some resistance to fluid flow, which
leads to a decrease in the flow velocity profiles.

In Fig. 4, the velocities decrease in both directions as the value of the porosity parameter �K in the
boundary layer increases. Therefore, the thickness of the boundary layer also decreases at higher values
of �K.

Fig. 5 shows the influence of the fluid interaction parameter βv on the velocity of the fluid and dust
phases for nanofluid Al2O3-H2O as a function of η. These graphs (Figs. 5a, 5b, and 5c) demonstrate
that as βv increases, the velocities of the fluid phase f ′(η), g′(η) decrease in both lateral directions x and
y, while the velocities of the dust phase F ′(η), G′(η) increase. The reason for this is that a larger fluid
interaction parameter βv produces more resistance for the fluid flow phase and less for the dust phase.

Fig. 6 depicts the effect of l on the fluid phase and dust phase velocities of the nanofluid (Al2O3-H2O).
This demonstrates that a decrease in the velocity profiles for both the fluid and dust phases is caused
by an increase in the parameter l. This is because an increase in the parameter l directly correlates with
an increase in dust particle density. The result is an increase in the flow resistance for both the fluid and
dust phases.

Fig. 7 illustrates the impact of an increase in nanoparticle diameter dn on the velocity profiles for the
fluid and dust phases. As a result, we can see that as the nanoparticle diameter dn rises, the fluid and
dust phase flows to speed up in the lateral directions x and y, which causes the boundary layer thickness
to rise as well. Thus, using the obtained analytical results, one can quickly and easily give a physical
interpretation of the processes caused by variations in various flow parameters of a nanofluid containing
dust particles without using any numerical methods for solving equations (14)-(17).

Let us compare the known numerical results of Ahmad and Nazar [8], Nadeem et al. [12], Oyelakin et
al.[25] and Vajravelu et al. [26] with the results obtained from expressions (21) taking into account (26)
and (29) for local skin friction coefficients −f ′′(0),−g′′(0) under the following conditions:

�K = 0, ϕs = 0, βv = 0.
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Fig. 2. Influence of Λ on velocity profiles f ′(η), g′(η) and F ′(η), G′(η) at fixed parameters M = �K = c =

0.5, l = 2, dn = 0.2, h = 1 and βv = 0.3.
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0.5, l = 2, dn = 0.2, h = 1 and βv = 0.3.
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The analytical results obtained from the exact solutions (29) and the available numerical results
[8],[12],[25],[26] agree well, as shown in Tab. 3.

In the case of the flow of a Newtonian electrically conductive fluid with dust particles under the
conditions,

c = 0, �K = 0, ϕs = 0,

we obtain an exact analytical expression for the coefficient of skin friction, which coincides with the result
of Jalil et al.[22]:

−f ′′(0) =

√
1 +M +

βvl

1 + βv
(30)

The analytical results obtained as a result of the use of expression (30) are perfectly consistent with the
numerical results of Gireesha et al. [27].

In the case of the flow of a non-Newtonian electrically conductive nanofluid with dust particles under
the conditions,

c = 0, �K = 0,

we obtain an exact analytical expression for the coefficient of skin friction, which coincides with the result
of Khan et al.[27]:

−f ′′(0) =

√
1(

1 + 1
Λ

) µnf

µf

(
ρnf
ρf

+
σnf

σf
M +

βvl

1 + βv

)
(31)
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As shown in [22], the analytical results obtained by using the expression (31) are in complete agreement
with the numerical results of Vajravelu et al. [26].

Next, we study the influence of the non-Newtonian (Cassonian) parameter Λ, magnetic field M , poros-
ity �K, fluid particle interaction parameter βv, mass concentration of dust particles l, and nanoparticle
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Table 2. A comparison of exact solutions for skin friction coefficients −f ′′(0) and −g′′(0) with numerical
results [8],[12],[25],[26].

Λ M c −f ′′(0)

numerical results
−g′′(0)

numerical results
−f ′′(0)

exact solutions
−g′′(0)

exact solutions

∞ 0 0 1.0000 [26]
1.0042 [8],[12]

0 1.0000 0

1 0 0 0.7071 [26] 0 0.7071 0

2 0 0 0.8164 [26] 0 0.8164 0

3 0 0 0.8660 [26] 0 0.8660 0

4 0 0 0.8944 [26] 0 0.8944 0

∞ 0 0.5 1.0932 [8],[12] 0.4653 [8],[12] 1.2247 0.6123

∞ 10 0.5 3.3420 [8],[12] 1.6459 [8],[12] 3.3911 1.6955

∞ 100 0.5 10.058 [8],[12] 5.0208 [8],[12] 10.074 5.0373

1 10 0 2.3452 [25] 0 2.3452 0

1 10 0.5 2.3631 [25] 1.1638 [25] 2.3979 1.1989

5 10 0 3.0276 [25] 0 3.0276 0

5 10 0.5 3.0508 [25] 1.5025 [25] 3.0956 1.5478

Table 3. Values −f ′′(0) and g′′(0) for the steady flow of a dusty nanofluid with various variations of
parameters.

Λ M �K βv l dn −f ′′(0) −g′′(0)

1 0.5 0.5 0.3 2 0.2 1.3582 0.6791

3 0.5 0.5 0.3 2 0.2 1.6635 0.8317

∞ 0.5 0.5 0.3 2 0.2 1.9209 0.9604

1 1.5 0.5 0.3 2 0.2 1.5823 0.7911

1 2.5 0.5 0.3 2 0.2 1.7784 0.8892

1 0.5 1.5 0.3 2 0.2 1.5313 0.7656

1 0.5 2.5 0.3 2 0.2 1.6867 0.8433

1 0.5 0.5 0.5 2 0.2 1.4097 0.7048

1 0.5 0.5 1.0 2 0.2 1.4977 0.7488

1 0.5 0.5 0.3 3 0.2 1.4096 0.7048

1 0.5 0.5 0.3 4 0.2 1.4592 0.7296

1 0.5 0.5 0.3 2 1.2 1.1053 0.5526

1 0.5 0.5 0.3 2 2.2 0.8682 0.4341

size dn on local skin friction coefficients −f ′′(0),−g′′(0) for nanofluid Al2O3-H2O. The physical proper-
ties of the nanofluid are taken from Tab. 2. We select the following fixed parameters for the problem:
c = 0.5, ϕs = 0.05, h = 1. The numerical values −f ′′(0),−g′′(0) for various variations of Λ,M, �K,βv, l,
and dn are then obtained using the exact solutions (26) and (29), as shown in Tab. 4. Tab. 4 shows that,
at the limit of the Newtonian fluid (Λ = ∞) the surface friction coefficients of the nanofluid in the x and
y directions are higher than those of the non-Newtonian fluid. In addition, an increase in the parameters
Λ,M, �K,βv, and l reduces the fluid flow velocity, which leads to an increase in the absolute values of the
skin friction coefficients in the x and y directions. On the other hand, as the nanoparticle diameter dn
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increases, so does the fluid flow velocity, which naturally leads to a decrease in the coefficients of surface
friction in the x and y directions.

5. Conclusions

In the present study, for the first time, an analytical solution for a stationary MHD boundary flow of
a Cassonian nanofluid containing dust particles over a stretching sheet is obtained. In the lateral direc-
tions x and y, a variant of linear stretching of a sheet (see Fig. 1) is considered. Analytical expressions
for the velocities of the fluid and dust phases, as well as skin friction in lateral directions x and y, are
derived for the flow of a typical nanofluid (Al2O3-H2O).The influence of the Casson parameter Λ, the
magnetic parameter M , the porosity parameter �K, the fluid-particle interaction parameter βv, the mass
concentration of dust particles l, and the nanoparticle size dn on the velocity profiles of the fluid and dust
phases is studied. New results for skin friction coefficients in lateral directions are presented in Table 3.
For simpler physical situations, comparison of the analytical results with the numerical results of previous
studies showed a high level of accuracy and consistency. The main results of this study are as follows:

1. An increase in the parameters Λ,M, �K, and l leads to a decrease in the flow rate of the fluid and
dust phases.

2. It is found that the velocity of the fluid phase decreases due to an increase in the parameter βv,
while the velocity of the dust phase increases.

3. An increase in the diameter dn of aluminium oxide nanoparticles leads to a decrease in the viscosity
of the water-based nanofluid and, as a consequence, an increase in the flow rates of the fluid and
dust phases.

Building upon our work, future analytical solutions will describe the unsteady 3D MHD Casson flow of
non-Newtonian dusty fluids over a porous stretching surface.
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