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1. Introduction
Atomic clusters are aggregates of atoms in 

the size range from a few to thousands of the 
components. The structural and electronic 
properties of clusters bear resemblance neither 
to atoms they are composed of, nor to solid-
sof the same composition. Their physical and 
chemical properties depend on number of their 

atoms and change as cluster size increases. 
One of the main tasks of cluster studies is to 
understand how cluster structure and proper-
ties change with an increase of cluster size and 
how many atoms are required to form a solid 
(see e.g. [1]). Linking atomic and mesoscopic 
range become a challenging task, since the use 
of both traditional modelling methods for small 
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Запропоновано модифікацію методу Монте-Карло для атомарних кластерів у 
мезоскопічному діапазоні, яка враховує особливості фазових переходів в атомарних 
кластерах. Було продемонстровано застосування методу до кластерів аргону з 2744 атомів у 
широкому діапазоні температур. Для цих температур розраховано термодинамічні функції 
та знайдено рівноважний фазовий стан. Показано, що фазовий перехід між твердим та 
рідким станами для кластера аргону такого розміру відбувається різко при температурі 
близько 75 К (для макроскопічного тіла температура плавлення становить 84 К). Рідкий і 
твердий стани практично не співіснують, на відміну від кластерів значно менших розмірів, 
де фазовий перехід розмитий. Показано, що для кластерів такого розміру  плавлення 
починається із зовнішніх оболонок кластера, а в рідкому стані флуктуації атомів 
посилюються в міру наближення до поверхні.
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systems (Molecular Dynamics) and macroscopic 
statistical physics are  restricted in this range 
of sizes. 

In connection with the above said, Monte-
Carlo algorithm comes to mind, that is a power-
ful method to study systems with a large num-
ber of degrees of freedom (see e.g.[2-11]). In the 
present work, this algorithm is used in order 
to model phase transitions in clusters in meso-
scopic range.

Monte Carlo methods are a broad class of 
computational algorithms that rely on repeated 
random sampling to obtain numerical results. 
As a rule, one experiment is repeated many 
times to obtain the probability distribution of 
the unknown quantity.  These methods are of-
ten used to solve physical and mathematical 
problems and are the most useful, when it is 
difficult or impossible to obtain an exact solu-
tion. Monte Carlo methods is mainly used in 
three different classes of problems: optimiza-
tion, numerical integration and distribution 
generation probabilities. To solve physical 
problems, Monte Carlo methods are very use-
ful for modeling systems with many degrees of 
freedom, for example, liquids, disordered ma-
terials, strongly connected solids and lattice 
structures (see e,g. [2-14]).

Monte Carlo molecular modelling is the ap-
plication of Monte Carlo methods to molecular 
problems. These problems can also be modelled 
by the molecular dynamics method. The differ-
ence is that this approach relies on equilibrium 
statistical mechanics rather than molecular 
dynamics. Instead of trying toreproduce the 
dynamics of a system, it generates states ac-
cording to appropriate Boltzmann distribution. 
Thus, it is the application of the Metropolis 
Monte Carlo simulation to molecular systems. 
It is therefore also a particular subset of the 
more general Monte Carlo method in statistical 
physics. It employs a Markov chain procedure 
in order to determine a new state for a system 
from a previous one. According to its stochastic 
nature, this new state is accepted at random. 
Each trial usually counts as a move. The avoid-
ance of dynamics restricts the method to stud-
ies of static quantities only, but the freedom to 
choose moves makes the method very flexible. 
These moves must only satisfy a basic condi-
tion of balance in order for the equilibrium to 
be properly described, but detailed balance, a 
stronger condition, is usually imposed when 
designing new algorithms. An additional ad-
vantage is that some systems, such as the Ising 

model, lack a dynamical description and are 
only defined by an energy prescription; for 
these the Monte Carlo approach is the only 
one feasible. The great success of this method 
in statistical mechanics has led to various gen-
eralizations such as the method of simulated 
annealing for optimization, in which a fictitious 
temperature is introduced and then gradually 
lowered (see e.g.[7]).

Both Classical Monte Carlo (MC) and Clas-
sical Molecular Dynamics (MD) simulations 
are used to perform simulations of ensembles of 
molecules. These MC calculations are calculat-
ing thermodynamic properties via an ensemble 
average, while the MD simulations are doing so 
via a time average.  A computational review of 
molecular dynamics, Monte Carlo simulations, 
Langevin dynamics, and free energy calcula-
tion is presented in [4]. The exposition is made 
from first principles to promote a better under-
standing of the potentialities, limitations, ap-
plications, and interrelations of these computa-
tional methods.

The special type of Monte-Carlo method, 
the algorithm of Metropolis [12] lies in the    
following:

1) The energy of interaction between atoms 
in a cluster is calculated, i.e. energy of the “old” 
or initial configuration: E1 . After this, all at-
oms are given small shifts and the energy of 
the “new” configuration is calculated: E2 .

2) The energy of the “new” configuration is 
compared to  that of the “old” one. The “new” 
configuration is accepted and becomes the ini-
tial one for the next step with probability
 p E E e E E T

1 2
1 2®( ) -( )~ /  (1)

However, the applicability of the method for 
atomic clusters is limited, since the time (num-
ber of modeling steps) required to observe a 
phase transition grows exponentially with the 
size of the cluster. This happens due to the fact 
that, if random displacements of all atoms oc-
cur in the same range, energy difference in  the 
exponent (1) is proportional  to the number of 
cluster atoms.

In connection with this, the present work 
proposes a modeling mechanism that is based 
on the nature of phase transitions in atomic 
clusters

1. Research idea
Until now, the Monte Carlo method in phys-

ics has been applied to systems with a relative-
ly small number of degrees of freedom, such as 
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spin systems polymers (including dendrimers) 
with rigid bonds, etc. However, in an atomic 
cluster, the atoms are not rigidly connected, 
which leads to a large number of degrees of 
freedom of the system, and the number of pos-
sible microstates of the cluster grows exponen-
tially with its size. Up to now, only clusters of 
small sizes (up to 100 atoms) were studied (see 
e.g. [13,14]). 

However, in the present paper we are inter-
ested in studying clusters in mesoscopic range 
(thousands of atoms).  In order to make the 
modeling timefeasible, the following approach 
is proposed, based on the fact that the melt-
ing process in real atomic clusters begins from 
the outer shells [15-19]. Thus, while modeling  
melting of the cluster, we look for “islands (nu-
cleus) of new phase” forming on the cluster sur-
face, deliberately choosing states with fluctua-
tions of randomly chosen surface atoms. If, as a 
result of such approach,  the outer shell of the 
cluster becomes less ordered, random fluctua-
tion are given to the atoms in the next (closer to 
the center) shell. Thus, we mimic melting pro-
cess in real cluster that starts from the outer 
cluster shell. Depending on cluster tempera-
ture, in the equilibrium cluster state either the 
entire cluster is heterogeneous (solid or liquid) 
or several outer shells can be melted while the 
core remains solid.

Thus, we are looking for the  centrally sym-
metric macrostates, where the maximum pos-
sible displacement of an atom at one step is de-
termined by the centrally symmetric function 
Δ(r), , and this function increases monotonical-
ly in towards the cluster surface, because the 
energy factor in formula (1) is less important 
for surface atoms.

It should be emphasized that displacement 
function Δ(r), obtained after averaging over 
N=10 initial random conformations,  charac-
terizes a new macrostate of the cluster, which 
corresponds to a large number of microscopic 
implementations, that is, microstates M. The 
set of microstates M under consideration must 
provide the macrostate Δ(r) can change during 
the evolution of the system via Monte Carlo 
method.

1a. Modified Metropolis algorithm.
It should be noted that such a function Δ(r) 

allows one to estimate entropy and free energy 
of the system. To do this, it is necessary that 
the algorithm allows estimating the number 
of microstates corresponding to the resulting 
macrostate of the system.

Let each of the atoms have an allowed range 
of displacements Δ(ri) where i is atom number, 
ri where i is the number of the atom, ri is its 
distance from the cluster center. Let a certain 
number of modeling steps be performed using 
the Metropolis algorithm (1), and the displace-
ment of each atom is chosen randomly in the 
range Δ(ri). Moreover, in order for the estimate 
of the number of microstates to be correct, at 
each step the condition must be met that only 
a small fraction of nerr attempts to transition 
to a new microstate of the cluster, carried out 
according to algorithm (1), are unsuccessful. 
Otherwise, the range of allowed displacements 
must be narrowed. This guarantees that the 
newly obtained macrostate is realized by ran-
domly chosen microstates in the characteristic 
range Δ(ri). 

Thus, the modified Metropolis algorithm can 
be presented by the following equation set:

p
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Here Rand function each time produces a new 
random number in the range determined by its 
arguments, p E E1 2®( )  – the probability of 
transition to a new microstate averaged over a 
large number (in this model 100) attempts. It 
should be noted that criterion (4) determines 
the form of the function Δ(r) and is essentially 
the only “fitting” parameter of the model. The 
independence of the result from nerr criterion 
(4) can be easily verified.

1b. Determining the entropy of the sys-
tem.

Let, as a result of algorithm (2-4), a new 
macrostate of the cluster is obtained, with new 
macroscopic parameters, such as the radial 
density distribution and the degree of ordering 
of atoms as a function of the distance from the 
cluster center, as well as the internal energy of 
the cluster E. Then the number of microstates 
n, characterizing the new macrostate can be 
evaluate how
 n r

i
i= ( )ÕD   (5),

where the product is taken over all atoms of the 
cluster.

  Accordingly, the entropy and free energy of 
the cluster can be estimated as
 S r

i
i= ( )åln( )D  (6)
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 F E T r
i

i= - ( )åln( )D  (7)
where the summation is performed over all at-
oms. Entropy, in turn, will make it possible to 
obtain the size and temperature dependences 
of the heat capacity and heat of melting of the 
cluster.

1с. Determining displacement function 
Δ(r)  

Of all the possible functions Δ(r) character-
izing the new macroscopic state of the system 
in formula (1), one should choose the one that 
ensures the minimization of free energy. With-
out taking into account the surface, Δ(r) would 
be a constant, which can be taken as the zero 
approximation: Δ(r) = const. In order to account 
for the influence of the surface, cluster atoms, 
starting from the surface and moving towards 
the center, are given small additions to  Δ(r), 
and the probability of transition to a new mi-
crostate is determined by formulas (2-4). The 
maximum of additives that satisfy criterion (4) 
is determined, and preference is given to small 
ranges of displacements for the maximum 
number of atoms, that is, the obtained  func-
tion   D r( )   will be as “flat” as possible. Then 
the resulting conformation is taken as the ini-
tial one, and the process is repeated iteratively 
until the minimum free energy of the cluster is 
reached (7).

The implementation of such an algorithm 
is described in detail in Section 2. It should be 
noted that such an algorithm corresponds to the 
melting process in real atomic clusters, where 
melting begins from the outer shells.

In the case when there are 2 or more free 
energy minima, corresponding to macrostates 
with different degrees of cluster ordering, the 
probability of finding a cluster in each of these 
minima
 P F T~ ( / )exp -    (8)
where F is the free energy of the system, deter-
mined by formula (7)

In the next section, practical implementa-
tion of the modified Metropolis algorithm is de-
scribed(2-4).

2.Model and Method.
The purpose of this work is to study the 

probability of a cluster transitioning from a 
solid state to a liquid one as a function of tem-
perature and size. 

As objects for modeling were chosen Ar 
clusters with number of atoms N=2744. Rare 
gas clusters are one of the simplest systems, 
in particular three-particle interactions can 
be neglected in this case [15]. Up to the size of 
several thousand atoms, rare-gas clusters form 
icosahedral structure, that allows to minimize 
cluster surface, for larger clusters transfer to 
FCC structure occurs.

Initially, cubic lattice of Ar atoms (atomic 
mass m=39.9 a.u.) was constructed with the lat-
tice period a = 4.816 Å (corresponding to solid 
Ar). Atoms are interacting via Lennard-Jones 
potential with the following parameters, taken 
for Argon atoms: σ=3.405 Å, D=0.01032 eV. 
Here D is the depth of the potential well, σ is 
the finite distance at which the inter-particle 
potential is zero. 

Moreover, the present simulation uses a dis-
crete set of 100 possible ranges of random dis-
placements with an upper bound on the range
 d k r kk

min= × = ¼
3
1000

1 100, , ,  . (9)
Where rmin is the equilibrium distance between 
atoms. Within the k-th range, the displacement 
of each atom along each coordinate is chosen 
randomly in the range from-dk / 2  to dk / 2
. Minimal range d1 is selected from consider-
ations of the finite transition probability at 
which each cluster atom is given a minimum 
displacement from 0 to d1:

e E E T( ) ( ) / ~r d rmin min+ -( )1 1
The maximum range of displacements is 

chosen based on the fact that the transition of 
a substance from a solid to a liquid state oc-
curs when fluctuations in the interatomic state 
reach 15%.

The use of larger displacement ranges ex-
pands the phase volume, however, the energy 
factor and time limitation will not allow a sig-
nificant increase in the range of random dis-
placements for all atoms simultaneously. It is 
logical to start expanding the range of displace-
ments from surface atoms, where the binding 
energy is lower.

The algorithm is carried out in the following 
steps:

1. The cluster energy is minimized by the 
traditional Metropolis algorithm (1) at zero 
temperature. Then the initial state of the clus-
ter is obtained by random small displacements 
of the cluster from 0.0001 rmin to 0.05 rmin for 
different initial conformations. 10 initial con-
formations are prepared for each such displace-
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ment. Depending on the magnitude of these ini-
tial displacements, the evolution of the cluster 
can end up in either a solid or liquid state.

2. Then, all atoms in the cluster are given 
random displacements in the same range from 
-d1 2/  to d1 2/ .  One modeling step is made 
in accordance with algorithm (2-4), nerr in (4) 
is selected equal to 10%. If criterion (4) is met, 
the new conformation is taken as the original 
one, then one moves on to the next range of 
displacements from the list (9). Otherwise, one 
goes to point 3.

3. Let the kth range of displacements from the 
list (9) be reached in step 2. In the cluster con-
formation obtained in step 2, n random atoms of 
the cluster, starting with n=1, then n=2,3,..., are 
given a shift within k+1-th range and the mod-
eling step is performed according to algorithm 
(2-4). First, atoms are selected randomly, but 
within the surface layer at a depth rmin, then, 
if n exceeds the number of atoms in the surface 
layer, algorithm moves on to the next layers. As 
soon as criterion (4) is no longer met, the con-
formation obtained at the previous step is taken 
as the initial one and modeling step described 
above in item 3, is repeated  for the next range 
of displacements from the list (9).

4. Execution of the algorithm continues as 
long as criterion (4) is satisfied. Then the next 
iteration is carried out, that is, actions starting 
from item (2). This is necessary so that the in-
ner shells can adapt to the disordering of the 
outer shells and actually simulates the melting 
process in real clusters.

5. Iterations in item (4) stop when the free 
energy of the cluster reaches a minimum. It is 
checked that the free energy minimum (7), lo-
cal or global, has actually been achieved, that 
is, it does not change with small random dis-
placements of atoms.

Since the displacement ranges change with 
a fairly small step compared to the equilibrium 
interatomic distance rmin, the radial depen-
dence of the magnitude of “fluctuations” of at-
oms Δ(r) on the distance to the cluster center r 
turns out to be almost continuous.

It should be emphasized that the function 
Δ(r) itself evolves as it passes through the steps 
of the method, as illustrated in Fig. 1.

There are 3 possible simulation outcomes 
depending on the choice of the initial cluster 
conformation described in item 1: 1. The cluster 
remains completely ordered. 2. The cluster is 
completely disordered. 3. The outer shells are 
partially disordered.

3. Results and discussion.
To illustrate the method, a simulation of an 

argon cluster of 2744 atoms was carried out in 
the range of 20-80K.
During the modeling process, two types free en-
ergy minima were found for all temperatures, 
which can be attributed to the liquid and solid 
states of the cluster. One of these minima is 
global and determines the phase state of the 
cluster at a given temperature.

Figure 2 shows the final (equilibrium) de-
pendences Δ(r) for the liquid and solid phase 
states of the cluster at different temperatures. 
As expected, the closer the atom is to the cluster 
surface, the greater is its displacement range. 
As temperature lowers, solid and liquid states 
become indiscernible. Thus, at a temperature 
T=35K, Δ(r) in the liquid state differs slightly 
from that of the solid, and only for large dis-
tances from the center.

One can also see from Fig. 2 that melting be-
gins from the outer shells of the cluster and in 
the liquid state, fluctuations of atoms increase 
as they approach the surface.

In Fig.3. The dependence of the free energy 
of the cluster, calculated using formula (2) on 
the number of steps of the Monte Carlo method, 
is shown. It can be seen that with a sufficiently 
large number of steps, the free energy stabi-
lizes and the system reaches a minimum free 
energy (global or local).

From Figure 3 it can be understood, which 
phase state is predominant for a given temper-
ature. To clarify the results, the probability P 
of the cluster transition from solid  to the liquid 

Fig.1. Displacement range Δ(r) as function of 
distance from the cluster center as function of 
number of Monte-Carlo steps. The “time-se-
quence” of the plots is shown in legend.
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state, calculated using Eq. (8), is presented in 
Table (1). The table shows that the phase tran-
sition of an argon cluster of 2744 atoms occurs 
abruptly at a temperature of about 75 K (for 
a macroscopic body the melting point is 84 K). 
The liquid and solid states practically do not 
coexist, in contrast to clusters of significantly 
smaller sizes where, as is known from the lit-
erature [16,18], when the phase transition is 
blurred.

It can also be seen that proposed in the pres-
ent work modelling method provides monoto-
nous decreas of free energy for all studied initial 
conformations and provides reaching of stable 
conformation during feasible time (about 5×106 
Monte Carlo steps for 2744 atoms cluster size).

4. Conclusions
This work proposes a modification of the 

Monte Carlo method for atomic clusters in me-
soscopic range. The proposed modification takes 
into account the peculiarities of phase transi-
tions in atomic clusters in which, as is known, 
melting begins from the outer shells and pro-
ceeds to the inner ones. At the same time, the 
randomness of the choice of atomic displace-
ments at each step of the method is preserved, 
and the range of displacements is the same for 
centrally symmetric atoms, that is, the choice 
from all possible macrostates is made in favor 
to centrally symmetric ones. This is consistent 
with existing knowledge about the physics 
of clusters. We can say that from all possible 
macrostates we select those where islands of a 
new phase begin to form on the surface of the 
 cluster.

The proposed algorithm has the following 
advantages.

1. It takes into account the centrally sym-
metric structure of the cluster, allowing one to 
simulate surface effects (the evolution of clus-
ter shells) and characterize phase states corre-
sponding to different degrees of disorder.

2. Of all possible random conformations, it 
selects only a small part, that costitute spheri-
cally simmetrical macrostates. The displace-
ment range of atoms starts from small values 
and grows gradually until free energy minimum 
is reached. Thus no “excessive” microstates are 
taken into account which saves substantially 
modelling time. 

3. Gradual growth of allowed atom displace-
ment range provides gradual system evolution 
from the most ordered to less ordered state, pro-
viding that no free energy minima are missed. 

4. During the calculation process, the ther-
modynamic functions of the cluster are calcu-
lated naturally without additional computer 
time. 

5. Proposed in the present work modelling 
method provides monotonous decreas of free 
energy for all studied initial conformations and 

Fig.2. Displacement range Δ(r)as function of dis-
tance from the cluster center for solid and liquid 
states at various temperatures.

Fig.3. Free energy F for solid and liquid states of 
the cluster at various temperatures.

Table 1. Ratio of probabilities to find cluster 
in liquid or solid state.

T,K Ln(Pliquid/Psolid)

25 -75285

65 -36602

70 -2540

75 26

80 532
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provides reaching of stable conformation dur-
ing feasible time

Thus, new approach to computer modelling 
of atomic clusters in mesoscopic range is devel-
oped in the present work, that allows to obtain 
stable conformations of  atomic clusters during 
feasible modelling time. This allows to study 
the dependendense of cluster thermodynamics 
and conformational  properties on cluster size 
in mesoscopic size range.
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