Funct. Mater. 2025; 32 (1): 126-133.

doi:https://doi.org/10.15407/fm32.01.126

Indolenine-based semisquaraine dye for visual detection and sensing of mercury (II)

R. P. Svoiakov, O. G. Kulyk, I. V. Hovor, H. S. Vlasenko, A. L. Tatarets, O. S. Kolosova

Institute of Functional Materials Chemistry of SSI “Institute for Single Crystals” of NAS of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Mercury is a highly toxic pollutant that poses significant risks to the environment and human health. Despite the availability of various methods for detecting Hg2+ ions, there is a high demand for the development of small molecule sensors that are simple, rapid, cost-effective, selective and sensitive. Here, we examine the application of indolenine-based semisquaraine dye SqS as a chemosensor for the mercury detection in an aqueous and organic (alcoholic) media. The addition of Hg2+ ions to the SqS solution induces a noticeable color change from light pink to yellow, while other metal cations, including Li+, Ni+, Na+, K+, Ba2+, Mg2+, Ca2+, Cu2+, Co2+, Fe3+, Al3+, Pb2+, and Cd2+ do not cause any significant change in color or absorption spectra. The limit of Hg2+ detection under proposed measurement conditions was determined to be 38 nM. The analysis of the binding characteristics of SqS using Job’s and molar ratio methods, along with mass spectrometry, indicates that the stoichiometry of the SqS–Hg2+ complex is 1:1 and 2:1. This chemosensor can be used for the selective colorimetric detection of mercury ions in environmental samples, such as water sources, and in biological systems, contributing to pollution monitoring and safety assessments.

Keywords: 
squaraine, mercury, chemosensor, determination, spectrum parameters, absorbance, Job’s plot, molar ratio method, aqueous solution.
References: 
1. Natasha, M. Shahid, S. Khalid et al., Sci. Total Environ., 711, 134749 (2020).
https://doi.org/10.1016/j.scitotenv.2019.134749
 
2. B. Gworek, W. Dmuchowski, A. H. Baczewska-Dąbrowska, Environ. Sci. Eur., 32, 128 (2020).
https://doi.org/10.1186/s12302-020-00401-x
 
3. L. Wang, D. Hou, Y. Cao et al., Environ. Int., 134, 105281 (2020).
https://doi.org/10.1016/j.envint.2019.105281
 
4. G. Xu, P. Song, L. Xia, Nanophotonics, 10, 4419 (2021).
https://doi.org/10.1515/nanoph-2021-0363
 
5. K. E. Kristian, S. Friedbauer, D. Kabashi et al., J. Chem. Educ., 92, 698 (2015).
https://doi.org/10.1021/ed500687b
 
6. J. Švehla, R. Žídek, T. Ružovič et al., Spectrochim. Acta Part B At. Spectrosc., 156, 51 (2019).
https://doi.org/10.1016/j.sab.2019.05.002
 
7. K. Pytlakowska, K. Kocot, B. Hachuła et al., Spectrochim. Acta Part B At. Spectrosc., 167, 105846 (2020).
https://doi.org/10.1016/j.sab.2020.105846
 
8. R. Iftikhar, I. Parveen, Ayesha et al., J. Environ. Chem. Eng., 11, 109030 (2023).
https://doi.org/10.1016/j.jece.2022.109030
 
9. D. Udhayakumari, J. Incl. Phenom. Macrocycl. Chem., 102, 451 (2022).
https://doi.org/10.1007/s10847-022-01138-1
 
10. S. Chakraborty, K. Das, S. Halder, Inorganica Chim. Acta, 566, 122026 (2024).
https://doi.org/10.1016/j.ica.2024.122026
 
11. L. Wang, Y. Ma, W. Lin, J. Hazard. Mater., 461, 132604 (2024).
https://doi.org/10.1016/j.jhazmat.2023.132604
 
12. Y. Wang, L. Zhang, X. Han et al., Chem. Eng. J., 406, 127166 (2021).
https://doi.org/10.1016/j.cej.2020.127166
 
13. H. Shuai, C. Xiang, L. Qian et al., Dyes Pigm., 187, 109125 (2021).
https://doi.org/10.1016/j.dyepig.2020.109125
 
14. L. Ma, C. Liu, H. Zhu et al., Dyes Pigm., 220, 111595 (2023).
https://doi.org/10.1016/j.dyepig.2023.111595
 
15. G. Bjørklund, G. Crisponi, V. M. Nurchi et al., Molecules, 24, 3247 (2019).
https://doi.org/10.3390/molecules24183247
 
16. M. Matsui, in: Progress in the Science of Functional Dyes, Springer Singapore, Singapore (2021), p. 3-19.
https://doi.org/10.1007/978-981-33-4392-4_1
 
17. Y. Li, Y. Qi, Z. Xu et al., Color. Technol., 138, 427 (2022).
https://doi.org/10.1111/cote.12603
 
18. G. Li, Y. Guan, F. Ye et al., Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 239, 118465 (2020).
https://doi.org/10.1016/j.saa.2020.118465
 
19. S. Fang, L. Zhang, Y. Zhao et al., Sens. Actuators B Chem., 411, 135768 (2024).
https://doi.org/10.1016/j.snb.2024.135768
 
20. Y. Wang, X. Hou, Z. Li et al., Dyes Pigm., 173, 107951 (2020).
https://doi.org/10.1016/j.dyepig.2019.107951
 
21. C. V. Esteves, J. Costa, H. Bernard et al., New J. Chem., 44, 6589 (2020).
https://doi.org/10.1039/D0NJ00852D
 
22. H. Zhu, J. Fan, H. Chen et al., Dyes Pigm., 113, 181 (2015).
https://doi.org/10.1016/j.dyepig.2014.07.041
 
23. K. Ilina, W. M. MacCuaig, M. Laramie et al., Bioconjug. Chem., 31, 194 (2020).
https://doi.org/10.1021/acs.bioconjchem.9b00482
 
24. R. R. Avirah, K. Jyothish, D. Ramaiah, Org. Lett., 9, 121 (2007).
https://doi.org/10.1021/ol062691v
 
25. J.-S. Bae, Y.-A. Son, S.-H. Kim, Fibers Polym., 10, 403 (2009).
https://doi.org/10.1007/s12221-009-0403-3
 
26. S. V Shishkina, V. N. Baumer, O. V Shishkin et al., J. Struct. Chem., 46, 154 (2005).
https://doi.org/10.1007/s10947-006-0022-4
 
27. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, (2006).
https://doi.org/10.1007/978-0-387-46312-4
 

Current number: