Funct. Mater. 2025; 32 (1): 13-20.

doi:https://doi.org/10.15407/fm32.01.13

Thermal stability of perovskites CH3NH3PbX3 (X = Cl, Br, I)

S.S. Smolyak, V.L. Karbivskyy, V.Kh. Kasianenko, S.A. Nedilko, S.I. Shulyma, N.A.Kurgan, O.A. Puzko, L.I. Karbivska, A.P. Soroka

G.V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, blvd. Academician Vernadsky, 36, 03142 Kyiv, Ukraine

Abstract: 

The morphology and structures of perovskites were investigated using scanning electron microscopy and X-ray diffraction methods. The samples exhibit a monophase structure. The thermal stability and degradation processes of a series of perovskites CH3NH3PbX3 (where X = Cl, Br, I) were analyzed by the thermogravimetric method. The results indicate that the thermal stability is preserved up to 335°C for X = Cl, 330°C for X = Br, and 310°C for X = I. Additionally, a correlation was established between the thermal stability of CH3NH3PbX3 perovskites and the characteristics of the halogen atom in their structure. It was concluded that the thermal stability of hybrid organic-inorganic perovskites can be adjusted by varying the halogen atom incorporated in the perovskite structure.

Keywords: 
perovskite, thermal stability, degradation of perovskites, structural transformations.
References: 
1. Z. Yuan, W. Huang, S. Ma, W. Hu, and W. Zhang, J. Mater. Chem. C, 7, 5442 (2019). 
https://doi.org/10.1039/C9TC00892F
 
2. C-H. Lin, C-Y. Kang, T-Z. Wu, C-L. Tsai, C-W. Sher, X. Guan, P-T. Lee, T. Wu, C-H. Ho, H-C. Kuo, J-H. He, Adv. Funct. Mater., 30 1909275 (2020).
https://doi.org/ 10.1002/adfm.201909275
 
3. A.M. Al-Amri, B. Cheng, J-H. He, IEEE Trans. Nanotechnol., 18, 1 (2019). https://doi.org/ 10.1109/TNANO.2018.2872887
https://doi.org/10.1109/TNANO.2018.2872887
 
4. J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science, 358, 751 (2017). -
https://doi.org/10.1126/science.aam7092
 
5. J.-P. Correa-Baena, M. Saliba, T. Buonassisi et al., Science, 358, 739 (2017). 
https://doi.org/10.1126/science.aam6323
 
6. Rice University. "Lab achieves major gains in perovskite solar cell stability." ScienceDaily. ScienceDaily, 13 June 2024.
www.sciencedaily.com/releases/2024/06/240613221908.htm.
 
7. M. Liu, J. Mater. Chem. A, 5, 15447 (2017).
https://doi.org/10.1039/C7TA01325F
 
8. J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, ACS Nano, 9, 1955 (2015). https://doi.org/:10.1021/nn506864k
https://doi.org/10.1021/nn506864k
 
9. J. S. Manser, M. I. Saidaminov, Christians, J. A., et al., Accounts of Chemical Research, 49, 330 (2016). https://doi.org/10.1021/acs.accounts.5b00455
https://doi.org/10.1021/acs.accounts.5b00455
 
10. N. Aristidou, I. Sanchez-Molina, et al., Angew. Chemie - Int. Ed., 54, 8208 (2015). 
https://doi.org/10.1002/anie.201503153
 
11. Xiuxiu Niu, Nengxu Li, Zhenhua Cui, Liang Li et al., Advanced Materials, 35(45) e2305822 (2023). 
https://doi.org/10.1002/adma.202305822
 
12. T. Colenbrander, J. Peng, Y. Wu et al., Energy Advances, 2, 298 (2023). 
https://doi.org/10.1039/D2YA00218C
 
13. V. Romano, A. Agresti, R. Verduci, G. D'Angelo, ACS Energy Lett., 7, 2490 (2022). 
https://doi.org/10.1021/acsenergylett.2c01099
 
14. A. W. Y. Ho-Baillie, H. G. J. Sullivan, T. A. Bannerman, H. P. Talathi, J. Bing, S. Tang, A. Xu, D. Bhattacharyya, I. H. Cairns and D. R. McKenzie, Adv. Mater. Technol., 7, 2101059 (2022). https://doi.org/10.1002/admt.202101059
https://doi.org/10.1002/admt.202101059
 
15. https://www.fluxim.com/isos-protocols-stability-perovskite-solar-cells
 
16. A. Dualeh, P. Gao, S. I. Seok, M. K. Nazeeruddin, M. Grätzel, Chem. Mater., 26, 6160 (2014). 
https://doi.org/10.1021/cm502468k
 
17. B. Brunetti, C. Cavallo, A. Ciccioli, et al., Sci Rep., 6, 31896 (2016). 
https://doi.org/10.1038/srep31896
 
18. D. P. Nenon, J. A. Christians, L. M. Wheeler, J. L. Blackburn, E. M. Sanehira, B. Dou, M. L. Olsen, K. Zhu, J. J. Berry, J. M. Luther, Energy Environ. Sci., 9, 2072 (2016). 
https://doi.org/10.1039/C6EE01047D
 
19. A. E. Williams, P. J. Holliman, M. J. Carnie, M. L. Davies, D. A. Worsley, T. M. Watson, J. Mater. Chem. A, 2, 19338 (2014).
https://doi.org/10.1039/C4TA04725G
 
20. W. Yang, Physical Chemistry Chemical Physics, 26, 17999 (2024). 
https://doi.org/10.1039/D4CP01318B
 
21. E. J. Juarez-Perez, Z. Hawash, S. R. Raga, L. K. Ono and Y. Qi, Energy Environ. Sci., 9, 3406 (2016). 
https://doi.org/10.1039/C6EE02016J
 
22. L. Ma, D. Guo, M. Li, C. Wang, Z. Zhou, X. Zhao, F. Zhang, Z. Ao, and Z Nie, Chem. Mater., 31, 8515 (2019). 
https://doi.org/10.1021/acs.chemmater.9b03190
 
23. R. K. Singh, R. Kumar, A. Kumar, N. Jain, R. Kr. Singh, J. Singh, Journal of Alloys and Compounds, 743, 728 (2018) 
https://doi.org/10.1016/j.jallcom.2018.01.355
 
24. A. Poglitsch, D. Weber, The Journal of Chemical Physics, 87, 6373 (1987). 
https://doi.org/10.1063/1.453467
 
25. https://doi.org/10.1021/cm503240k
 
26. R.J. Crewe, J.E.J. Staggs, P.T. Williams, Polymer Degradation and Stabilit, 92 2070 (2007). 
https://doi.org/10.1016/j.polymdegradstab.2007.07.023
 
27. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, Tim J. White, Journal of Materials Chemistry A, 1, 5628 (2013). 
https://doi.org/10.1039/c3ta10518k
 
28. R. K. Singh, N. Jain, R. Kumar, in: Conference Paper in AIP Conference Proceedings, Bikaner, India (2018). 
https://doi.org/10.1063/1.5032825
 
29. D. Prochowicz, M. Franckevičius, A. M. Cieślak, S. M. Zakeeruddin, M. Grätzel, J. Lewinski, J. Mater. Chem. A, 3, 20772 (2015). 
https://doi.org/10.1039/C5TA04904K
 
30. A. Ciccioli and A. Latini. J. Phys. Chem. Lett., 9, 3756 (2018). 
https://doi.org/10.1021/acs.jpclett.8b00463
 
31. H-P. Hsu, L-C. Li, M. Shellaiah, K. W. Sun, Scientific Reports, 9, 13311 (2019). https://www.nature.com/articles/s41598-019-49926-z
 

Current number: