Funct. Mater. 2025; 32 (1): 13-20.
Thermal stability of perovskites CH3NH3PbX3 (X = Cl, Br, I)
G.V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, blvd. Academician Vernadsky, 36, 03142 Kyiv, Ukraine
The morphology and structures of perovskites were investigated using scanning electron microscopy and X-ray diffraction methods. The samples exhibit a monophase structure. The thermal stability and degradation processes of a series of perovskites CH3NH3PbX3 (where X = Cl, Br, I) were analyzed by the thermogravimetric method. The results indicate that the thermal stability is preserved up to 335°C for X = Cl, 330°C for X = Br, and 310°C for X = I. Additionally, a correlation was established between the thermal stability of CH3NH3PbX3 perovskites and the characteristics of the halogen atom in their structure. It was concluded that the thermal stability of hybrid organic-inorganic perovskites can be adjusted by varying the halogen atom incorporated in the perovskite structure.
1. Z. Yuan, W. Huang, S. Ma, W. Hu, and W. Zhang, J. Mater. Chem. C, 7, 5442 (2019). https://doi.org/10.1039/C9TC00892F |
||||
2. C-H. Lin, C-Y. Kang, T-Z. Wu, C-L. Tsai, C-W. Sher, X. Guan, P-T. Lee, T. Wu, C-H. Ho, H-C. Kuo, J-H. He, Adv. Funct. Mater., 30 1909275 (2020). https://doi.org/ 10.1002/adfm.201909275 |
||||
3. A.M. Al-Amri, B. Cheng, J-H. He, IEEE Trans. Nanotechnol., 18, 1 (2019). https://doi.org/ 10.1109/TNANO.2018.2872887 https://doi.org/10.1109/TNANO.2018.2872887 |
||||
4. J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Science, 358, 751 (2017). - https://doi.org/10.1126/science.aam7092 |
||||
5. J.-P. Correa-Baena, M. Saliba, T. Buonassisi et al., Science, 358, 739 (2017). https://doi.org/10.1126/science.aam6323 |
||||
6. Rice University. "Lab achieves major gains in perovskite solar cell stability." ScienceDaily. ScienceDaily, 13 June 2024. www.sciencedaily.com/releases/2024/06/240613221908.htm. |
||||
7. M. Liu, J. Mater. Chem. A, 5, 15447 (2017). https://doi.org/10.1039/C7TA01325F |
||||
8. J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, ACS Nano, 9, 1955 (2015). https://doi.org/:10.1021/nn506864k https://doi.org/10.1021/nn506864k |
||||
9. J. S. Manser, M. I. Saidaminov, Christians, J. A., et al., Accounts of Chemical Research, 49, 330 (2016). https://doi.org/10.1021/acs.accounts.5b00455 https://doi.org/10.1021/acs.accounts.5b00455 |
||||
10. N. Aristidou, I. Sanchez-Molina, et al., Angew. Chemie - Int. Ed., 54, 8208 (2015). https://doi.org/10.1002/anie.201503153 |
||||
11. Xiuxiu Niu, Nengxu Li, Zhenhua Cui, Liang Li et al., Advanced Materials, 35(45) e2305822 (2023). https://doi.org/10.1002/adma.202305822 |
||||
12. T. Colenbrander, J. Peng, Y. Wu et al., Energy Advances, 2, 298 (2023). https://doi.org/10.1039/D2YA00218C |
||||
13. V. Romano, A. Agresti, R. Verduci, G. D'Angelo, ACS Energy Lett., 7, 2490 (2022). https://doi.org/10.1021/acsenergylett.2c01099 |
||||
14. A. W. Y. Ho-Baillie, H. G. J. Sullivan, T. A. Bannerman, H. P. Talathi, J. Bing, S. Tang, A. Xu, D. Bhattacharyya, I. H. Cairns and D. R. McKenzie, Adv. Mater. Technol., 7, 2101059 (2022). https://doi.org/10.1002/admt.202101059 https://doi.org/10.1002/admt.202101059 |
||||
15. https://www.fluxim.com/isos-protocols-stability-perovskite-solar-cells | ||||
16. A. Dualeh, P. Gao, S. I. Seok, M. K. Nazeeruddin, M. Grätzel, Chem. Mater., 26, 6160 (2014). https://doi.org/10.1021/cm502468k |
||||
17. B. Brunetti, C. Cavallo, A. Ciccioli, et al., Sci Rep., 6, 31896 (2016). https://doi.org/10.1038/srep31896 |
||||
18. D. P. Nenon, J. A. Christians, L. M. Wheeler, J. L. Blackburn, E. M. Sanehira, B. Dou, M. L. Olsen, K. Zhu, J. J. Berry, J. M. Luther, Energy Environ. Sci., 9, 2072 (2016). https://doi.org/10.1039/C6EE01047D |
||||
19. A. E. Williams, P. J. Holliman, M. J. Carnie, M. L. Davies, D. A. Worsley, T. M. Watson, J. Mater. Chem. A, 2, 19338 (2014). https://doi.org/10.1039/C4TA04725G |
||||
20. W. Yang, Physical Chemistry Chemical Physics, 26, 17999 (2024). https://doi.org/10.1039/D4CP01318B |
||||
21. E. J. Juarez-Perez, Z. Hawash, S. R. Raga, L. K. Ono and Y. Qi, Energy Environ. Sci., 9, 3406 (2016). https://doi.org/10.1039/C6EE02016J |
||||
22. L. Ma, D. Guo, M. Li, C. Wang, Z. Zhou, X. Zhao, F. Zhang, Z. Ao, and Z Nie, Chem. Mater., 31, 8515 (2019). https://doi.org/10.1021/acs.chemmater.9b03190 |
||||
23. R. K. Singh, R. Kumar, A. Kumar, N. Jain, R. Kr. Singh, J. Singh, Journal of Alloys and Compounds, 743, 728 (2018) https://doi.org/10.1016/j.jallcom.2018.01.355 |
||||
24. A. Poglitsch, D. Weber, The Journal of Chemical Physics, 87, 6373 (1987). https://doi.org/10.1063/1.453467 |
||||
25. https://doi.org/10.1021/cm503240k | ||||
26. R.J. Crewe, J.E.J. Staggs, P.T. Williams, Polymer Degradation and Stabilit, 92 2070 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.07.023 |
||||
27. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, Tim J. White, Journal of Materials Chemistry A, 1, 5628 (2013). https://doi.org/10.1039/c3ta10518k |
||||
28. R. K. Singh, N. Jain, R. Kumar, in: Conference Paper in AIP Conference Proceedings, Bikaner, India (2018). https://doi.org/10.1063/1.5032825 |
||||
29. D. Prochowicz, M. Franckevičius, A. M. Cieślak, S. M. Zakeeruddin, M. Grätzel, J. Lewinski, J. Mater. Chem. A, 3, 20772 (2015). https://doi.org/10.1039/C5TA04904K |
||||
30. A. Ciccioli and A. Latini. J. Phys. Chem. Lett., 9, 3756 (2018). https://doi.org/10.1021/acs.jpclett.8b00463 |
||||
31. H-P. Hsu, L-C. Li, M. Shellaiah, K. W. Sun, Scientific Reports, 9, 13311 (2019). https://www.nature.com/articles/s41598-019-49926-z | ||||