Funct. Mater. 2025; 32 (1): 134-145.

doi:https://doi.org/10.15407/fm32.01.134

Comparative qualitative analysis of hot pressing of zirconium dioxide nanopowders

E.S.Hevorkian1, M.Rucki2, R.V.Vovk3, V.P.Nerubatskyi4, D.Pieniak5, V.O.Chyshkala3

1University of Life Sciences in Lublin, 13 Akademicka, 20-950 Lublin, Poland
2Casimir Pulaski Radom University, 54 Stasieckiego Sq., 26-600 Radom, Poland
3V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
4Ukrainian State University of Railway Transport, 7 Feierbakh Sq., 61050 Kharkiv, Ukraine
5 Faculty of Safety Engineering and Civil Protection, Fire University, 52/54 Słowackiego Street, 01-629 Warsaw, Poland

Abstract: 

The presented study confirms that the reduction of the level of structural dimensions to the submicron and nanometric ranges is the dominant trend in the development of structural and instrumental ceramics. Following this trend with the use of traditional methods leads to an increase in cost and a significant growth of grains, which requires the introduction of additional preliminary operations, such as grinding of grains and selection of starting powders. At the same time, the application of the method of electroconsolidation under pressure in a vacuum promotes the acceleration of compaction processes, which makes it possible to overcome the shortcomings of traditional approaches when obtaining fine-dispersed, high-density ceramic structures.

Keywords: 
amorphization, composite, electroconsolidation, sintering, zirconium dioxide.
References: 

1. A.Goldstein, N.Travitzky, A.Singurindy, M.Kravchik, Journal of the European Ceramic Society, 19(12), 2067–2072 (1999). doi: https://doi.org/10.1016/S0955-2219(99)00020-5.

2. G.D.Quinn, J.Eichler, U.Eisele, J.Rodel, Journal of the American Ceramic Society, 87(3), 513–516 (2004). doi: https://doi.org/10.1111/j.1551-2916.2004.00513.x.

3. Z.Shen, L.Liu, X.Xu, J.Zhao, M.Eriksson, Y.Zhong, E.Adolfsson, Y.Liu, A.Kocjan, Journal of the European Ceramic Society, 37(14), 4339–4345 (2017). doi: https://doi.org/10.1016/j.jeurceramsoc.2017.03.008.

4. E.S.Hevorkian, V.P.Nerubatskyi, M.Rucki, A.Kilikevicius, A.G.Mamalis, W.Samociuk, D.Morozow, Nanotechnology Perceptions, 20(1), 100–113 (2024). doi: https://doi.org/10.56801/nano-ntp.v20i1.363.

5. T.Zhu, Z.Xie, Journal of the American Ceramic Society, 105(3), 1617–1621 (2022). doi: https://doi.org/10.1111/jace.18178.

6. W.H.Rhodes, Journal of the American Ceramic Society, 64(1), 19–22 (1981). doi: https://doi.org/10.1111/j.1151-2916.1981.tb09552.x.

7. N.Bamba, Y.H.Choa, T.Sekino, K.Niihara, Journal of the European Ceramic Society, 23(5), 773–780 (2003). doi: https://doi.org/10.1016/S0955-2219(02)00168-1.

8. M.S.El-Eskandarany, A.Al-Hazza, L.A.Al-Hajji, N.Ali, A.A.Al-Duweesh, M.Banyan, F.Al-Ajmi, Nanomaterials, 11(10), 2484 (2021). doi: https://doi.org/10.3390/nano11102484.

9. P.Sinha, A.N.Datar, C.Jeong, X.Deng, Y.G.Chung, L.-C.Lin, The Journal of Physical Chemistry C, 123(33), 20195–20209 (2019). doi: https://doi.org/10.1021/acs.jpcc.9b02116.

10. M.I.Kabanova, V.A.Dubok, S.A.Nochevkin, Poroshkovaya metallurgiya, 9, 69–74 (1991) (in Russian).

11. J.Chevalier, L.Gremillard, A.V.Virkar, D.R.Clarke, Journal of the American Ceramic Society, 92(9), 1901–1920 (2009). doi: https://doi.org/10.1111/j.1551-2916.2009.03278.x.

12. K.Vanmeensel, A.Laptev, O.Van der Biest, J.Vleugels, Journal of the European Ceramic Society, 27(2–3), 979–985, (2007). doi: https://doi.org/10.1016/j.jeurceramsoc.2006.04.142.

13. V.O.Chyshkala, S.V.Lytovchenko, V.P.Nerubatskyi, R.V.Vovk, E.S.Gevorkyan, O.M.Morozova, Functional Materials, 29(1), 30–38 (2022). doi: https://doi.org/10.15407/fm29.01.30.

14. E.Hevorkian, R.Michalczewski, M.Rucki, D.Sofronov, E.Osuch-Słomka, V.Nerubatskyi, Z.Krzysiak, J.N.Latosińska, Ceramics International, 50(19A), 35226–35235 (2024). doi: https://doi.org/10.1016/j.ceramint.2024.06.331.

15. B.Basu, J.Vleugels, O.Van der Biest, Materials Science and Engineering: A, 380(1–2), 215–221 (2004). doi: https://doi.org/10.1016/j.msea.2004.03.065.

16. E.Gevorkyan, V.Nerubatskyi, V.Chyshkala, O.Morozova, Eastern-European Journal of Enterprise Technologies, 5(12(113)), 6–19 (2021). doi: https://doi.org/10.15587/1729-4061.2021.242503.

17. E.S.Gevorkyan, D.S.Sofronov, V.P.Nerubatskyi, V.O.Chyshkala, O.M.Morozova, O.M.Lebedynskyi, P.V.Mateychenko, Journal of Superhard Materials, 45(1), 31–45 (2023). doi: https://doi.org/10.3103/S1063457623010057.

18. H.Y.Ryu, H.H.Nersisyan, J.H.Lee, International Journal of Refractory Metals and Hard Materials, 30(1), 133–138 (2012). doi: https://doi.org/10.1016/j.ijrmhm.2011.07.015.

19. G.Anné, S.Put, K.Vanmeensel, D.Jiang, J.Vleugels, O.Van der Biest, Journal of the European Ceramic Society, 25(1), 55–63 (2005). doi: https://doi.org/10.1016/j.jeurceramsoc.2004.01.015.

20. Z.Krzysiak, E.Gevorkyan, V.Nerubatskyi, M.Rucki, V.Chyshkala, J.Caban, T.Mazur, Materials, 15(17), 6073 (2022). doi: https://doi.org/10.3390/ma15176073.

21. V.P.Nerubatskyi, R.V.Vovk, E.S.Gevorkyan, D.A.Hordiienko, Z.F.Nazyrov, H.L.Komarova, Low Temperature Physics, 49(11), 1277–1282 (2023). doi: https://doi.org/10.1063/10.0021374.

22. M.Mulukutla, A.Singh, S.P.Harimkar, JOM, 62, 65–71 (2010). doi: https://doi.org/10.1007/s11837-010-0090-y.

23. D.V.Dudina, A.K.Mukherjee, Journal of Nanomaterials, 2013, 625218 (2013). doi: https://doi.org/10.1155/2013/625218.

24. Z.A.Munir, Journal of Materials Synthesis and Processing, 8, 189–196 (2000). doi: https://doi.org/10.1023/A:1011312126285.

25. E.S.Hevorkian, V.P.Nerubaskyi, V.O.Chyshkala, S.V.Lytovchenko, M.M.Prokopiv, W.Samociuk, V.A.Mechnik, Journal of Superhard Materials, 46(5), 364–375 (2024). doi: https://doi.org/10.3103/S1063457624050046.

26. M.Vanlandingham, Journal of research of the National Institute of Standards and Technology, 108(4), 249–265 (2003). doi: https://doi.org/10.6028/jres.108.024.

27. A.G.Mamalis, E.S.Hevorkian, V.P.Nerybatskyi, M.Rucki, Z.Krzysiak, O.M.Morozova, Nanotechnology Perceptions, 19(3), 26–46 (2023). doi: https://doi.org/10.56801/nano-ntp.v19i3.325.

28. B.T.Ratov, E.Hevorkian, V.A.Mechnik, N.A.Bondarenko, V.M.Kolodnitskyi, T.O.Prikhna, V.E.Moshchil, V.P.Nerubaskyi, А.B.Kalzhanova, R.U.Bayamirova, A.R.Togasheva, M.D.Sarbopeeva, Journal of Superhard Materials, 46(3), 175–186 (2024). doi: https://doi.org/10.3103/S1063457624030079.

29. V.P.Nerubatskyi, R.V.Vovk, M.Gzik-Szumiata, E.S.Gevorkyan, Low Temperature Physics, 49(4), 540–546 (2023). doi: https://doi.org/10.1063/10.0017596.

30. B.T.Ratov, V.A.Mechnik, N.A.Bondarenko, V.M.Kolodnitskyi, E.S.Gevorkyan, V.P.Nerubaskyi, A.G.Gusmanova, B.V.Fedorov, N.A.Kaldibaev, M.T.Arshidinova, V.G.Kulych, Journal of Superhard Materials, 45(5), 348–359 (2023). doi: https://doi.org/10.3103/S1063457623050088.

31. R.Chaim, M.Hefetz, Journal of Materials Research, 13, 1875–1880 (1998). doi: https://doi.org/10.1557/JMR.1998.0266.

32. E.Tiferet, G.Kimmel, G.Danieli, D.Mogilyanski, O.Yeheskel, Journal of the European Ceramic Society, 33(10), 1947–1954 (2013). doi: https://doi.org/10.1016/j.jeurceramsoc.2013.03.003.

33. A.B.Nagaram, G.Maistro, E.Adolfsson, Y.Cao, E.Hryha, L.Nyborg, Metals, 14(8), 914 (2024). doi: https://doi.org/10.3390/met14080914.

34. D.-J.Chen, M.J.Mayo, Nanostructured Materials, 2(5), 469–478 (1993). doi: https://doi.org/10.1016/0965-9773(93)90164-7.

35. M.Tokita, Ceramics, 4(2), 160–198 (2021). doi: https://doi.org/10.3390/ceramics4020014.

36. J.R.Groza, Powder Metallurgy, 7(2), 583–589 (1998).

37. F.Bernard, S.Gallet, N.Spinassou, S.Paris, E.Gaffet, J.N.Woolman, Z.A.Munir, Science of Sintering, 36(3), 155–164 (2004). doi: https://doi.org/10.2298/SOS0403155B.

38. T.K.Gupta, F.F.Lange, J.H.Bechtold, Journal of Materials Science, 13, 1464–1470 (1978). doi: https://doi.org/10.1007/BF00553200.

39. R.Orrù, R.Licheri, A.M.Locci, A.Cincotti, G.Cao, Materials Science and Engineering: R: Reports, 63(4–6), 127–287 (2009). doi: https://doi.org/10.1016/j.mser.2008.09.003.

40. G.S.A.M.Theunissen, A.J.A.Winnubst, A.J.Burggraaf, Journal of the European Ceramic Society, 11(4), 315–324 (1993). doi: https://doi.org/10.1016/0955-2219(93)90031-L.

41. P.Duran, M.Villegas, F.Capel, J.F.Fernandez, C.Moure, Journal of Materials Science, 32, 4507–4512 (1997). doi: https://doi.org/10.1023/A:1018613032145.

42. V.P.Nerubatskyi, E.S.Hevorkian, R.V.Vovk, Z.Krzysiak, H.L.Komarova, Low Temperature Physics, 50(7), 558–568 (2024). doi: https://doi.org/10.1063/10.0026282.

43. E.D.Whitney, Journal of the American Ceramic Society, 45(12), 612–613 (1962). doi: https://doi.org/10.1111/j.1151-2916.1962.tb11072.x.

44. K.R.Venkatachari, D.Huang, S.P.Ostrander, W.A.Schulze, G.C.Stangle, Journal of Materials Research, 10, 756–761 (1995). doi: https://doi.org/10.1557/JMR.1995.0756.

45. D.T.Livey, P.Murray, Journal of the American Ceramic Society, 39(11), 363–372 (1956). doi: https://doi.org/10.1111/j.1151-2916.1956.tb15606.x.

Current number: