Funct. Mater. 2025; 32 (1): 146-156.
Selective recovery of copper from metal-rich particles in waste printed circuit boards by mechanical processing
School of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523083, China
Abstract: This paper proposes a ball mill for the selective beneficiation of copper from metal-rich particles without any chemical treatment. Before ball milling, improved metal-rich particles were obtained through pretreatment including magnetic separation, crushing and separating. The effect of grinding time on the metal grade and recovery of copper (Cu), tin (Sn) and lead (Pb) was investigated. The results showed that there was a selective increase in Cu content in the concentrates during processing. In addition, Sn and Pb were enriched in tailings. Under optimum grinding cycles, the copper grade was beneficiated to 94.72 wt% from the initial 74.22 wt%, and its recovery rate was 86.78%. The content of tin and lead was increased to 28.27 wt% and 18.86 wt% from 10.13 wt% and 6.63 wt% in the by-products, respectively. The selective enrichment is due to the different plasticity and strengthening capacity of the components. The whole mechanical process is environmentally friendly, and the results will be useful for sustainable recycling of DPP.
1. Robinson, B. H., Science of The Total Environment, 408, (2), 183, 2009. https://doi.org/10.1016/j.scitotenv.2009.09.044 |
||||
2. Holgersson, S.; Steenari, B.; Björkman, M.; Cullbrand, K., Resources, Conservation and Recycling, 133, 300, 2018. https://doi.org/10.1016/j.resconrec.2017.02.011 |
||||
3. Arshadi, M.; Yaghmaei, S.; Mousavi, S. M Resources, Conservation and Recycling, 139, 298, 2018. https://doi.org/10.1016/j.resconrec.2018.08.013 |
||||
4. Ghosh, B.; Ghosh, M. K.; Parhi, P.; Mukherjee, P. S.; Mishra, B. K.,. Journal of Cleaner Production, 94, 5, 2015. https://doi.org/10.1016/j.jclepro.2015.02.024 |
||||
5. Aznar-Sánchez, J.; Velasco-Muñoz, J.; García-Gómez, J.; López-Serrano, M., Metals, 8, (10), 805, 2018. https://doi.org/10.3390/met8100805 |
||||
6. Ilankoon, I. M. S. K.; Ghorbani, Y.; Chong, M. N.; Herath, G.; Moyo, T.; Petersen, J., Waste Management, 82, 258, 2018. https://doi.org/10.1016/j.wasman.2018.10.018 |
||||
7. Li, H.; Eksteen, J.; Oraby, E., Resources, Conservation and Recycling, 139, 122, 2018. https://doi.org/10.1016/j.resconrec.2018.08.007 |
||||
8. Liu, F.; Wan, B.; Wang, F.; Chen, W., 2019 Journal of the Air & Waste Management Association, 69, 1490, 2019. https://doi.org/10.1080/10962247.2019.1674751 |
||||
9. Baniasadi, M.; Vakilchap, F.; Bahaloo-Horeh, N.; Mousavi, S. M.; Farnaud, S., Journal of Industrial and Engineering Chemistry, 76, 75, 2019. https://doi.org/10.1016/j.jiec.2019.03.047 |
||||
10. Sethurajan, M.; van Hullebusch, E. D., Metals, 9, (10), 1034, 2019. https://doi.org/10.3390/met9101034 |
||||
11. Kim, E.; Kim, M.; Lee, J.; Jeong, J.; Pandey, B. D., Hydrometallurgy, 107, (3-4), 124, 2011. https://doi.org/10.1016/j.hydromet.2011.02.009 |
||||
12. Guo, C.; Wang, H.; Liang, W.; Fu, J.; Yi, X., Waste Management, 31, (9-10), 2161, 2011. https://doi.org/10.1016/j.wasman.2011.05.011 |
||||
13. Kaya, M.,. Waste Management, 57, 64, 2016. https://doi.org/10.1016/j.wasman.2016.08.004 |
||||
14. Yoo, J.; Jeong, J.; Yoo, K.; Lee, J.; Kim, W., Waste Management, 29, (3), 1132, 2009. https://doi.org/10.1016/j.wasman.2008.06.035 |
||||
15. Cui, J.; Forssberg, E., Journal of Hazardous Materials, 99, (3), 243, 2003. https://doi.org/10.1016/S0304-3894(03)00061-X |
||||
16. Kumar, V.; Lee, J.; Jeong, J.; Jha, M. K.; Kim, B.; Singh, R., Separation and Purification Technology, 111, 145, 2013. https://doi.org/10.1016/j.seppur.2013.03.039 |
||||
17. Kumar, V.; Lee, J.; Jeong, J.; Jha, M. K.; Kim, B.; Singh, R., Journal of Industrial and Engineering Chemistry, 21, 805, 2015. https://doi.org/10.1016/j.jiec.2014.04.016 |
||||
18. Somasundaram, M.; Saravanathamizhan, R.; Ahmed Basha, C, et.all. Powder Technology, 266, 1, 2014. https://doi.org/10.1016/j.powtec.2014.06.006 |
||||
19. Koyanaka, S.; Endoh, S.; Ohya, H., Advanced Powder Technology, 17, (1), 113, 2006. https://doi.org/10.1163/156855206775123467 |
||||
20. Nekouei, R. K.; Pahlevani, F.; Rajarao, R, Journal of Cleaner Production, 184, 1113, 2018. https://doi.org/10.1016/j.jclepro.2018.02.250 |
||||
21. Otsuki, A.; Pereira Gonçalves, P.; Leroy, E, Metals, 9, (8), 899, 2019. https://doi.org/10.3390/met9080899 |
||||
22. Zhang, S.; Forssberg, E., Resources, Conservation and Recycling, 21, (4), 247, 1997. https://doi.org/10.1016/S0921-3449(97)00039-6 |
||||
23. Verma, H. R.; Singh, K. K.; Basha, S. M, Journal of Sustainable Metallurgy, 4, (2), 187, 2018. https://doi.org/10.1007/s40831-018-0179-z |
||||
24. Ren, T.; Yang, S.; Wu, S.; Wang, M.; Xue, Y., Chemical Engineering Journal, 374, 100, 2019. https://doi.org/10.1016/j.cej.2019.05.172 |
||||
25. Liu, B.; Qin, T.; Lu, X.; Zhang, Y.; Xu, W.; Pan, Y.; Jia, C.; Wen, C., Journal of Alloys and Compounds, 800, 490, 2019. https://doi.org/10.1016/j.jallcom.2019.06.130 |
||||
26. Chen, W.; Fu, Z.; Fang, S.; Xiao, H.; Zhu, D., Materials & Design, 51, 854, 2013. https://doi.org/10.1016/j.matdes.2013.04.061 |
||||
27. Fu, Z.; Chen, W.; Wen, H.; Zhang, D.; Chen, Z.; Zheng, B.; Zhou, Y.; Lavernia, E. J.,. Acta Materialia, 107, 59, 2016. https://doi.org/10.1016/j.actamat.2016.01.050 |
||||
28. Koyanaka, S.; Endoh, S.; Ohya, H.; Iwata, H., Powder Technology, 90(2), 135, 1997. https://doi.org/10.1016/S0032-5910(96)03213-5 |
||||
29. Hossain, R.; Nekouei, R. K.; Mansuri, I.; Sahajwalla, V., ACS Sustainable Chemistry & Engineering, 7, (1), 1006, 2018. https://doi.org/10.1021/acssuschemeng.8b04657 |
||||
30. Ulman, K.; Maroufi, S.; Bhattacharyya, S.; Sahajwalla, V., Journal of Cleaner Production, 198, 1485, 2018. https://doi.org/10.1016/j.jclepro.2018.07.140 |
||||