Funct. Mater. 2025; 32 (1): 146-156.

doi:https://doi.org/10.15407/fm32.01.146

Selective recovery of copper from metal-rich particles in waste printed circuit boards by mechanical processing

Yonglin Xu

School of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523083, China

Abstract: 

Abstract: This paper proposes a ball mill for the selective beneficiation of copper from metal-rich particles without any chemical treatment. Before ball milling, improved metal-rich particles were obtained through pretreatment including magnetic separation, crushing and separating. The effect of grinding time on the metal grade and recovery of copper (Cu), tin (Sn) and lead (Pb) was investigated. The results showed that there was a selective increase in Cu content in the concentrates during processing. In addition, Sn and Pb were enriched in tailings. Under optimum grinding cycles, the copper grade was beneficiated to 94.72 wt% from the initial 74.22 wt%, and its recovery rate was 86.78%. The content of tin and lead was increased to 28.27 wt% and 18.86 wt% from 10.13 wt% and 6.63 wt% in the by-products, respectively. The selective enrichment is due to the different plasticity and strengthening capacity of the components. The whole mechanical process is environmentally friendly, and the results will be useful for sustainable recycling of DPP.

Keywords: 
Cu; Selective beneficiation; Waste printed circuit boards (WPCBs); Ball milling; Waste recovery
References: 
1. Robinson, B. H., Science of The Total Environment, 408, (2), 183, 2009.
https://doi.org/10.1016/j.scitotenv.2009.09.044
 
2. Holgersson, S.; Steenari, B.; Björkman, M.; Cullbrand, K., Resources, Conservation and Recycling, 133, 300, 2018.
https://doi.org/10.1016/j.resconrec.2017.02.011
 
3. Arshadi, M.; Yaghmaei, S.; Mousavi, S. M Resources, Conservation and Recycling, 139, 298, 2018.
https://doi.org/10.1016/j.resconrec.2018.08.013
 
4. Ghosh, B.; Ghosh, M. K.; Parhi, P.; Mukherjee, P. S.; Mishra, B. K.,. Journal of Cleaner Production, 94, 5, 2015.
https://doi.org/10.1016/j.jclepro.2015.02.024
 
5. Aznar-Sánchez, J.; Velasco-Muñoz, J.; García-Gómez, J.; López-Serrano, M., Metals, 8, (10), 805, 2018.
https://doi.org/10.3390/met8100805
 
6. Ilankoon, I. M. S. K.; Ghorbani, Y.; Chong, M. N.; Herath, G.; Moyo, T.; Petersen, J., Waste Management, 82, 258, 2018.
https://doi.org/10.1016/j.wasman.2018.10.018
 
7. Li, H.; Eksteen, J.; Oraby, E., Resources, Conservation and Recycling, 139, 122, 2018.
https://doi.org/10.1016/j.resconrec.2018.08.007
 
8. Liu, F.; Wan, B.; Wang, F.; Chen, W., 2019 Journal of the Air & Waste Management Association, 69, 1490, 2019.
https://doi.org/10.1080/10962247.2019.1674751
 
9. Baniasadi, M.; Vakilchap, F.; Bahaloo-Horeh, N.; Mousavi, S. M.; Farnaud, S., Journal of Industrial and Engineering Chemistry, 76, 75, 2019.
https://doi.org/10.1016/j.jiec.2019.03.047
 
10. Sethurajan, M.; van Hullebusch, E. D., Metals, 9, (10), 1034, 2019.
https://doi.org/10.3390/met9101034
 
11. Kim, E.; Kim, M.; Lee, J.; Jeong, J.; Pandey, B. D., Hydrometallurgy, 107, (3-4), 124, 2011.
https://doi.org/10.1016/j.hydromet.2011.02.009
 
12. Guo, C.; Wang, H.; Liang, W.; Fu, J.; Yi, X., Waste Management, 31, (9-10), 2161, 2011.
https://doi.org/10.1016/j.wasman.2011.05.011
 
13. Kaya, M.,. Waste Management, 57, 64, 2016.
https://doi.org/10.1016/j.wasman.2016.08.004
 
14. Yoo, J.; Jeong, J.; Yoo, K.; Lee, J.; Kim, W., Waste Management, 29, (3), 1132, 2009.
https://doi.org/10.1016/j.wasman.2008.06.035
 
15. Cui, J.; Forssberg, E., Journal of Hazardous Materials, 99, (3), 243, 2003.
https://doi.org/10.1016/S0304-3894(03)00061-X
 
16. Kumar, V.; Lee, J.; Jeong, J.; Jha, M. K.; Kim, B.; Singh, R., Separation and Purification Technology, 111, 145, 2013.
https://doi.org/10.1016/j.seppur.2013.03.039
 
17. Kumar, V.; Lee, J.; Jeong, J.; Jha, M. K.; Kim, B.; Singh, R., Journal of Industrial and Engineering Chemistry, 21, 805, 2015.
https://doi.org/10.1016/j.jiec.2014.04.016
 
18. Somasundaram, M.; Saravanathamizhan, R.; Ahmed Basha, C, et.all. Powder Technology, 266, 1, 2014.
https://doi.org/10.1016/j.powtec.2014.06.006
 
19. Koyanaka, S.; Endoh, S.; Ohya, H., Advanced Powder Technology, 17, (1), 113, 2006.
https://doi.org/10.1163/156855206775123467
 
20. Nekouei, R. K.; Pahlevani, F.; Rajarao, R, Journal of Cleaner Production, 184, 1113, 2018.
https://doi.org/10.1016/j.jclepro.2018.02.250
 
21. Otsuki, A.; Pereira Gonçalves, P.; Leroy, E, Metals, 9, (8), 899, 2019.
https://doi.org/10.3390/met9080899
 
22. Zhang, S.; Forssberg, E., Resources, Conservation and Recycling, 21, (4), 247, 1997.
https://doi.org/10.1016/S0921-3449(97)00039-6
 
23. Verma, H. R.; Singh, K. K.; Basha, S. M, Journal of Sustainable Metallurgy, 4, (2), 187, 2018.
https://doi.org/10.1007/s40831-018-0179-z
 
24. Ren, T.; Yang, S.; Wu, S.; Wang, M.; Xue, Y., Chemical Engineering Journal, 374, 100, 2019.
https://doi.org/10.1016/j.cej.2019.05.172
 
25. Liu, B.; Qin, T.; Lu, X.; Zhang, Y.; Xu, W.; Pan, Y.; Jia, C.; Wen, C., Journal of Alloys and Compounds, 800, 490, 2019.
https://doi.org/10.1016/j.jallcom.2019.06.130
 
26. Chen, W.; Fu, Z.; Fang, S.; Xiao, H.; Zhu, D., Materials & Design, 51, 854, 2013.
https://doi.org/10.1016/j.matdes.2013.04.061
 
27. Fu, Z.; Chen, W.; Wen, H.; Zhang, D.; Chen, Z.; Zheng, B.; Zhou, Y.; Lavernia, E. J.,. Acta Materialia, 107, 59, 2016.
https://doi.org/10.1016/j.actamat.2016.01.050
 
28. Koyanaka, S.; Endoh, S.; Ohya, H.; Iwata, H., Powder Technology, 90(2), 135, 1997.
https://doi.org/10.1016/S0032-5910(96)03213-5
 
29. Hossain, R.; Nekouei, R. K.; Mansuri, I.; Sahajwalla, V., ACS Sustainable Chemistry & Engineering, 7, (1), 1006, 2018.
https://doi.org/10.1021/acssuschemeng.8b04657
 
30. Ulman, K.; Maroufi, S.; Bhattacharyya, S.; Sahajwalla, V., Journal of Cleaner Production, 198, 1485, 2018.
https://doi.org/10.1016/j.jclepro.2018.07.140
 

Current number: