Funct. Mater. 2025; 32 (1): 166-169.

doi:https://doi.org/10.15407/fm32.01.166

Radiation-resistant plastic scintillator on a polystyrene-polyphenymetylsiloxane mixed base

D.A. Yelisieiev, O.V. Yelisieieva, Yu.A. Gurkalenko, P.N. Zhmurin, V.D. Alekseev, L.O.Miroshnichenko

Institute of Scintillation Materials, STC “Institute for Single Crystals”National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

In this work, plastic scintillators based on mixed polystyrene-polyphenylmethylsiloxane have been created, and their mechanical and scintillation characteristics have been studied. The created plastic scintillators based on polystyrene containing 30 wt. % polyphenylmethylsiloxane, demonstrated radiation resistance reaching 22 Mrad. The obtained PSs retain their physical and mechanical properties at a level that ensures ease of mechanical processing of the material and makes it possible to obtain samples in a wide range of shapes and sizes.

Keywords: 
polymer base, polystyrene, polyphenylmethylsiloxane, plastic scintillator, microhardness, light output, radiation resistance.
References: 
1. J.B. Birks. The Theory and Practice of Scintillation Counting: Pergamon Press, London, (1964) p. 212.
https://doi.org/10.1016/B978-0-08-010472-0.50010-0
 
2. V.G. Senchishin, V.М. Lebedev, A.F. Adadurov et al. Functional Materials, 10 (2), 281 (2003)
 
3. V.G. Senchysyn, V.N. Lebedev, N.P. Khalapova et al. Problems of Atomic Science and Technology, 3, 160 (2005)
 
4. CMS Collab. J. Instrum, 3, S08004 (2008)
 
5. LHCb Collab. J. Instrum. 3, S08005 (2008)
 
6. L. Bartoszek et Collab. Mu2e Technical Design Report. FERMILAB-TM-2594. FERMILAB-DESIGN-2014-01, 888 (2015)
https://doi.org/10.2172/1172555
 
7. F. Markley, V. Senchishin, V. Lebedev et al. Nuclear Instr. and Methods in Physics Research A, 364 (2), 253 (1995)
https://doi.org/10.1016/0168-9002(95)00470-X
 
8. B.V. Hrynyov, V.G. Senchyshyn. Plastic scintillators: Kharkiv, Akta, (2003) 324 p. (Ukr)
 
9. P.М. Zhmurin, D.A. Yelisieiev, V.D. Alekseev et al. Nucl. Phys. At. Energy, 23 (3), 212 (2022)
https://doi.org/10.15407/jnpae2022.03.212
 
10. P.М. Zhmurin, D.A. Yelisieiev, V.D. Alekseev et al. Problems of Atomic Science and Technology, 1 (137), 95 (202).
 
11. J.K. Walker, A.R. Katritzky, Z. Degaszfaran. Chem. Scr., 29, 245 (1989)
 
12. J. Harmon et al. Nuclear Inst. and Methods in Physics Research, B, 53, 309 (1991)
https://doi.org/10.1016/0168-583X(91)95619-O
 
13. M. Bowen, S. Majewski, D. Pettey et al. IEEE Transactions on Nuclear Science, 36 (1), 562 (1989)
https://doi.org/10.1109/23.34501
 
14. A. Quaranta, S. Carturan, T. Marchi et al. Nuclear Inst. and Methods in Physics Research, B, 268, 3155 (2010)
https://doi.org/10.1016/j.nimb.2010.05.077
 
15. F. Acerbi, A. Branca, C. Brizzolari et al. Nuclear Inst. and Methods in Physics Research, A, 956, 163379 (2020)
https://doi.org/10.1016/j.nima.2019.163379

Current number: