Funct. Mater. 2025; 32 (1): 21-27.

doi:https://doi.org/10.15407/fm32.01.21

Absorption of electromagnetic radiation by an ordered composite based on a cubic lattice of metallic nanodimers

L.O. Abramenko1, V.M. Matiushyn1, A.V. Korotun1,2

1 National University “Zaporizhzhia Polytechnic” 64 Zhukovsky Str., Zaporizhzhia, 69063, Ukraine,
2 G.V. Kurdyumov Institute for Metal Physics of National Academy of Sciences of Ukraine,36 Academician Vernadsky Blvd., Kyiv, 03142, Ukraine

Abstract: 

The optical properties of an ordered nanocomposite based on a cubic lattice of metallic nanodimers are studied. The expressions for the frequency dependencies of the effective dielectric permittivity and magnetic permeability of the nanocomposite taking into account relaxation processes in metallic inclusions are obtained. The fact of the presence of the “blue” shift of the maximum of the imaginary part of the electric polarizability of the elementary cell, caused by collective effects, has been established. The frequency range in which the real parts of the effective permittivities are negative is determined; therefore, the nanocomposite under study is a “left” medium.

Keywords: 
metallic nanodimer, cubic lattice, elementary cell, effective dielectric permittivity and magnetic permeability, electric and magnetic polarizability, “left-handed” material.
References: 
1. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang,
Science 303, 1494-1496, (2004).
https://doi.org/10.1126/science.1094025
 
2. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788-792, (2004).
https://doi.org/10.1126/science.1096796
 
3. A. Boltasseva, V.M. Shalaev, Metamaterials 2, 1-17, (2008).
https://doi.org/10.1016/j.metmat.2008.03.004
 
4. J.B. Pendry, Phys. Rev. Lett. 85, 3966-3969, (2000).
https://doi.org/10.1103/PhysRevLett.85.3966
 
5. J.B. Pendry, D. Schurig, D.R. Smith, Science 312, 1780-1782, (2006).
https://doi.org/10.1126/science.1125907
 
6. S. Wang, S. Liu, Opt Expr 20(6), 6777-6787, (2012).
https://doi.org/10.1364/OE.20.006777
 
7. S. Wang, X. Liu, Y. Zhu, Opt Commun 355, 80-84, (2015).
https://doi.org/10.1016/j.optcom.2015.06.031
 
8. M.M. Sadeghi, M. Sarisaman, S. Rostamzadeh, Optics and Laser Technology 176, 111036, (2024).
https://doi.org/10.1016/j.optlastec.2024.111036
 
9. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science, 314, 977-980, (2006).
https://doi.org/10.1126/science.1133628
 
10. W.S. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Nature Photonics 1, 224-227, (2007).
https://doi.org/10.1038/nphoton.2007.28
 
11. Y. Wang, Y. Ge, Z. Zhou, Z.(D). Chen, Physica Scripta 99(8), 085527, (2024).
https://doi.org/10.1088/1402-4896/ad5c0e
 
12. L.M. Liz-Marzán, Langmuir 22, 32-41, (2006).
https://doi.org/10.1021/la0513353
 
13. A. Taleb, V. Russier, A. Courty, M.P. Pileni, Physical Review B 59, 13350-13358, (1999).
https://doi.org/10.1103/PhysRevB.59.13350
 
14. D. Zanchet, M.S. Moreno, D. Ugarte, Physical Review Letters 82, 5277-5280, (1999).
https://doi.org/10.1103/PhysRevLett.82.5277
 
15. M. Gadenne, V. Podolskiy, P. Gadenne, P. Sheng, V.M. Shalaev, Europhysics Letters 53, 364-370, (2001).
https://doi.org/10.1209/epl/i2001-00162-1
 
16. F. Caruso, M. Spasova, V.S. no Maceira, L.M. Liz-Marzán, Advanced Materials 13, 1090-1094, (2001).
https://doi.org/10.1002/1521-4095(200107)13:14<1090::AID-ADMA1090>3.0.CO;2-H
 
17. T. Ung, L.M. Liz-Marzán, P. Mulvaney, The Journal of Physical Chemistry B 105, 3441-3452, (2001).
https://doi.org/10.1021/jp003500n
 
18. H. Fan, K. Yang, D.M. Boye, T. Sigmon, K.J. Malloy, H. Xu, G.P. López, C.J. Brinker, Science 304, 567-571, (2004).
https://doi.org/10.1126/science.1095140
 
19. H. Contopanagos, C.A. Kyriazidou, W.M. Merrill, N. G. Alexópoulos, Journal of the Optical Society of America A 16, 1682-1699, (1999).
https://doi.org/10.1364/JOSAA.16.001682
 
20. Z. Wang, C.T. Chan, W. Zhang, N. Ming, P. Sheng, Physical Review B 64, 113108, (2001).
https://doi.org/10.1103/PhysRevB.64.113108
 
21. A.A. Zakhidov, R.H. Baughman, I.I. Khayrullin, I.A. Udad, M. Kozlov, N. Eradat, V.Z. Vardeny, M. Sigalas, R. Biswas, Synthetic Metals 116, 419-426, (2001).
https://doi.org/10.1016/S0379-6779(00)00407-0
 
22. P. Xu, Z. Li, Journal of Physics D 37, 1718-1724, (2004).
https://doi.org/10.1088/0022-3727/37/12/019
 
23. C.R. Simovski, S.A. Tretyakov, Physical Review B 75, 195111, (2007).
https://doi.org/10.1103/PhysRevB.75.195111
 
24. Y. Chen, X. Wang, Z. Yong, Y. Zhang, Z. Chen, L. He, P.F. Lee, H.L.W. Chan, C. W. Leung, Y. Wang, Physics Letters A 376(16), 1396-1400, (2012).
https://doi.org/10.1016/j.physleta.2012.01.044
 
25. D. Röhlig, E. Kuhn, F. Teichert, A. Thränhardt, T. Blaudeck, EPL 145(2), 26001 (2024).
https://doi.org/10.1209/0295-5075/ad1de9
 
26. N.L. Dmitruk, A.V. Goncharenko, E.F. Venger, Optics of small particles and composite media. Naukova Dumka, Kyiv (2009).
 
27. M. Wang, N. Pan, Materials Science and Engineering: R: Reports 63(1), 1-30, (2008).
https://doi.org/10.1016/j.mser.2008.07.001
 
28. M.Ya. Sushko, Journal of Physics D: Applied Physics 42, 155410, (2009).
https://doi.org/10.1088/0022-3727/42/15/155410
 
29. S.N. Wani, A.S. Sangani, R. Sureshkumar, Journal of the Optical Society of America B 29, 1443-1455, (2012).
https://doi.org/10.1364/JOSAB.29.001443
 
30. C. Etrich, S. Fahr, M.K. Hedayati, F. Faupel, M. Elbahri, C. Rockstuhl, Materials 7(2), 727-741, (2014).
https://doi.org/10.3390/ma7020727
 
31. V. Markel, Journal of the Optical Society of America A 33(7), 1244-1256, (2016).
https://doi.org/10.1364/JOSAA.33.001244
 
32. B.A. Belyaev, V.V. Tyurnev, Journal of Experimental and Theoretical Physics 127(4), 608-619, (2018).
https://doi.org/10.1134/S1063776118100114
 
33. A.K. Semenov, Journal of Physics Communications 2, 035045, (2018).
https://doi.org/10.1088/2399-6528/aab060
 
34. S.N. Starostenko, K.N. Rozanov, V. Bovtun, A.O. Shiryaev, AIP Advances 10, 015115, (2020).
https://doi.org/10.1063/1.5133470
 
35. A.V. Korotun, N.I. Pavlyshche, Functional Materials 29(4), 567-575, (2022).
  https://doi.org/10.15407/fm29.04.567
 
36. D.T. Meiers, G. von Freymann, Optics Express 31(20), 32067-32081, (2023).
https://doi.org/10.1364/OE.494653
 
37. A.V. Korotun, N.A. Smyrnova, I.M. Titov, H.M. Shylo, Metallofiz. Noveishie Tekhnol. 45(5), 569-591, (2023) [in Ukrainian].
https://doi.org/10.15407/mfint.45.05.0569
 
38. J. Kim, K. Han, J.W. Hahn, Scientific Reports 7(1), 6740 (2017).
https://doi.org/10.1038/s41598-017-06749-0
 
39. J. Sancho-Parramon, V. Janicki, H. Zorc, Optics Express 18(26), 26915-26928, (2010).
https://doi.org/10.1364/OE.18.026915
 
40. R. Niguma, T. Matsuyama, K. Wada, K. Okamoto, Photonics 11(4), 356, (2024).
https://doi.org/10.3390/photonics11040356
 
41. A.V. Korotun, H.V. Moroz, R.Yu. Korolkov, Functional Materials 31(1), 119-127, 2024.
  https://doi.org/10.15407/fm31.01.119

Current number: