Funct. Mater. 2025; 32 (1): 21-27.
Absorption of electromagnetic radiation by an ordered composite based on a cubic lattice of metallic nanodimers
1 National University “Zaporizhzhia Polytechnic” 64 Zhukovsky Str., Zaporizhzhia, 69063, Ukraine,
2 G.V. Kurdyumov Institute for Metal Physics of National Academy of Sciences of Ukraine,36 Academician Vernadsky Blvd., Kyiv, 03142, Ukraine
The optical properties of an ordered nanocomposite based on a cubic lattice of metallic nanodimers are studied. The expressions for the frequency dependencies of the effective dielectric permittivity and magnetic permeability of the nanocomposite taking into account relaxation processes in metallic inclusions are obtained. The fact of the presence of the “blue” shift of the maximum of the imaginary part of the electric polarizability of the elementary cell, caused by collective effects, has been established. The frequency range in which the real parts of the effective permittivities are negative is determined; therefore, the nanocomposite under study is a “left” medium.
1. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Science 303, 1494-1496, (2004). https://doi.org/10.1126/science.1094025 |
||||
2. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788-792, (2004). https://doi.org/10.1126/science.1096796 |
||||
3. A. Boltasseva, V.M. Shalaev, Metamaterials 2, 1-17, (2008). https://doi.org/10.1016/j.metmat.2008.03.004 |
||||
4. J.B. Pendry, Phys. Rev. Lett. 85, 3966-3969, (2000). https://doi.org/10.1103/PhysRevLett.85.3966 |
||||
5. J.B. Pendry, D. Schurig, D.R. Smith, Science 312, 1780-1782, (2006). https://doi.org/10.1126/science.1125907 |
||||
6. S. Wang, S. Liu, Opt Expr 20(6), 6777-6787, (2012). https://doi.org/10.1364/OE.20.006777 |
||||
7. S. Wang, X. Liu, Y. Zhu, Opt Commun 355, 80-84, (2015). https://doi.org/10.1016/j.optcom.2015.06.031 |
||||
8. M.M. Sadeghi, M. Sarisaman, S. Rostamzadeh, Optics and Laser Technology 176, 111036, (2024). https://doi.org/10.1016/j.optlastec.2024.111036 |
||||
9. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science, 314, 977-980, (2006). https://doi.org/10.1126/science.1133628 |
||||
10. W.S. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Nature Photonics 1, 224-227, (2007). https://doi.org/10.1038/nphoton.2007.28 |
||||
11. Y. Wang, Y. Ge, Z. Zhou, Z.(D). Chen, Physica Scripta 99(8), 085527, (2024). https://doi.org/10.1088/1402-4896/ad5c0e |
||||
12. L.M. Liz-Marzán, Langmuir 22, 32-41, (2006). https://doi.org/10.1021/la0513353 |
||||
13. A. Taleb, V. Russier, A. Courty, M.P. Pileni, Physical Review B 59, 13350-13358, (1999). https://doi.org/10.1103/PhysRevB.59.13350 |
||||
14. D. Zanchet, M.S. Moreno, D. Ugarte, Physical Review Letters 82, 5277-5280, (1999). https://doi.org/10.1103/PhysRevLett.82.5277 |
||||
15. M. Gadenne, V. Podolskiy, P. Gadenne, P. Sheng, V.M. Shalaev, Europhysics Letters 53, 364-370, (2001). https://doi.org/10.1209/epl/i2001-00162-1 |
||||
16. F. Caruso, M. Spasova, V.S. no Maceira, L.M. Liz-Marzán, Advanced Materials 13, 1090-1094, (2001). https://doi.org/10.1002/1521-4095(200107)13:14<1090::AID-ADMA1090>3.0.CO;2-H |
||||
17. T. Ung, L.M. Liz-Marzán, P. Mulvaney, The Journal of Physical Chemistry B 105, 3441-3452, (2001). https://doi.org/10.1021/jp003500n |
||||
18. H. Fan, K. Yang, D.M. Boye, T. Sigmon, K.J. Malloy, H. Xu, G.P. López, C.J. Brinker, Science 304, 567-571, (2004). https://doi.org/10.1126/science.1095140 |
||||
19. H. Contopanagos, C.A. Kyriazidou, W.M. Merrill, N. G. Alexópoulos, Journal of the Optical Society of America A 16, 1682-1699, (1999). https://doi.org/10.1364/JOSAA.16.001682 |
||||
20. Z. Wang, C.T. Chan, W. Zhang, N. Ming, P. Sheng, Physical Review B 64, 113108, (2001). https://doi.org/10.1103/PhysRevB.64.113108 |
||||
21. A.A. Zakhidov, R.H. Baughman, I.I. Khayrullin, I.A. Udad, M. Kozlov, N. Eradat, V.Z. Vardeny, M. Sigalas, R. Biswas, Synthetic Metals 116, 419-426, (2001). https://doi.org/10.1016/S0379-6779(00)00407-0 |
||||
22. P. Xu, Z. Li, Journal of Physics D 37, 1718-1724, (2004). https://doi.org/10.1088/0022-3727/37/12/019 |
||||
23. C.R. Simovski, S.A. Tretyakov, Physical Review B 75, 195111, (2007). https://doi.org/10.1103/PhysRevB.75.195111 |
||||
24. Y. Chen, X. Wang, Z. Yong, Y. Zhang, Z. Chen, L. He, P.F. Lee, H.L.W. Chan, C. W. Leung, Y. Wang, Physics Letters A 376(16), 1396-1400, (2012). https://doi.org/10.1016/j.physleta.2012.01.044 |
||||
25. D. Röhlig, E. Kuhn, F. Teichert, A. Thränhardt, T. Blaudeck, EPL 145(2), 26001 (2024). https://doi.org/10.1209/0295-5075/ad1de9 |
||||
26. N.L. Dmitruk, A.V. Goncharenko, E.F. Venger, Optics of small particles and composite media. Naukova Dumka, Kyiv (2009). | ||||
27. M. Wang, N. Pan, Materials Science and Engineering: R: Reports 63(1), 1-30, (2008). https://doi.org/10.1016/j.mser.2008.07.001 |
||||
28. M.Ya. Sushko, Journal of Physics D: Applied Physics 42, 155410, (2009). https://doi.org/10.1088/0022-3727/42/15/155410 |
||||
29. S.N. Wani, A.S. Sangani, R. Sureshkumar, Journal of the Optical Society of America B 29, 1443-1455, (2012). https://doi.org/10.1364/JOSAB.29.001443 |
||||
30. C. Etrich, S. Fahr, M.K. Hedayati, F. Faupel, M. Elbahri, C. Rockstuhl, Materials 7(2), 727-741, (2014). https://doi.org/10.3390/ma7020727 |
||||
31. V. Markel, Journal of the Optical Society of America A 33(7), 1244-1256, (2016). https://doi.org/10.1364/JOSAA.33.001244 |
||||
32. B.A. Belyaev, V.V. Tyurnev, Journal of Experimental and Theoretical Physics 127(4), 608-619, (2018). https://doi.org/10.1134/S1063776118100114 |
||||
33. A.K. Semenov, Journal of Physics Communications 2, 035045, (2018). https://doi.org/10.1088/2399-6528/aab060 |
||||
34. S.N. Starostenko, K.N. Rozanov, V. Bovtun, A.O. Shiryaev, AIP Advances 10, 015115, (2020). https://doi.org/10.1063/1.5133470 |
||||
35. A.V. Korotun, N.I. Pavlyshche, Functional Materials 29(4), 567-575, (2022). https://doi.org/10.15407/fm29.04.567 |
||||
36. D.T. Meiers, G. von Freymann, Optics Express 31(20), 32067-32081, (2023). https://doi.org/10.1364/OE.494653 |
||||
37. A.V. Korotun, N.A. Smyrnova, I.M. Titov, H.M. Shylo, Metallofiz. Noveishie Tekhnol. 45(5), 569-591, (2023) [in Ukrainian]. https://doi.org/10.15407/mfint.45.05.0569 |
||||
38. J. Kim, K. Han, J.W. Hahn, Scientific Reports 7(1), 6740 (2017). https://doi.org/10.1038/s41598-017-06749-0 |
||||
39. J. Sancho-Parramon, V. Janicki, H. Zorc, Optics Express 18(26), 26915-26928, (2010). https://doi.org/10.1364/OE.18.026915 |
||||
40. R. Niguma, T. Matsuyama, K. Wada, K. Okamoto, Photonics 11(4), 356, (2024). https://doi.org/10.3390/photonics11040356 |
||||
41. A.V. Korotun, H.V. Moroz, R.Yu. Korolkov, Functional Materials 31(1), 119-127, 2024. https://doi.org/10.15407/fm31.01.119 |