Funct. Mater. 2025; 32 (1): 28-34.
Growing Ge1-xSnx solid solutions on Ge, GaAs substrates
1 Urgench State University, 14 Kh.Alimdjan, Urgench, 220100, Uzbekistan
2Leipzig University, 10 Augustplatz, Leipzig 04109, Germany
Single-crystal films of the Ge1-xSnx solid solution were grown in the temperature range of 893-723 K at a cooling rate of 0.5-1.5 K/min from a limited tin solution-melt. The substrates were Ge(111) and GaAs(100) with a carrier concentration of n=(1÷5)·1017cm–3, n=(4÷7)·1017cm-3, respectively. The gap between the substrates was 0.65÷1.2 mm. The technological conditions for obtaining a GaAs- Ge1-xSnx heterostructure with a smooth substrate-film boundary were achieved, while the supercooling temperature was T=6.2 °C. The single crystallinity of the Ge1-xSnx 0 ≤ x ≤0.03) film was determined by X-ray diffractometry. The film photosensitivity covers the spectral region of 0.5-1.9 eV.
1. Ch.Tan, S.Ke, J.Lv, Y.Huang, D.Peng, Zh.Duan, Y.Wu, J.Yang, F.Lin, Ch.Wang. Applied Surface Science, 657, 159707 (2024). https://doi.org/10.1016/j.apsusc.2024.159707 |
||||
2. N.Taoka, G.Capellini, V.Schlykow, M.Mntanari, P.Zaumseil, O.Nakatsuka, Sh. Zaima, Th.Schroeder. Materials Science in Semiconductor Processing. 70, 139 (2017). https://doi.org/10.1016/j.mssp.2017.07.013 |
||||
3. Y.Wang, L.Zhang, Z.Huang, Ch.Li, S.Chen, W.Huang, J.Xu, J.Wang. Materials Science in Semiconductor Processing. 88, 28 (2018). https://doi.org/10.1016/j.mssp.2018.07.030 |
||||
4. H.Groiss, M.Glaser, M.Schatzl, M.Brehm, D.Gerthsen, D.Roth, P.Bauer, F. Schäffler. Scientific Reports, 7, 16114 (2017). https://doi.org/10.1038/s41598-017-16356-8 |
||||
5. D.Gayakwad, D.Singh, R.Kumar, Y.I.Mazur Sh.Q.Yu, G.J.Salamo, S.Mahapatra, K.R.Khiangte. Journal of Crystal Growth, 618, 127306 (2023). https://doi.org/10.1016/j.jcrysgro.2023.127306 |
||||
6. Sh.Shibayama, K.Takagi, M.Sakashita, M.Kurosawa, O.Nakatsuka. Materials Science in Semiconductor Processing. 176, 108302 (2024). https://doi.org/10.1016/j.mssp.2024.108302 |
||||
7. C.Gunder, F.Maia de Oliveira, E.Wangila, H.Stanchu, M.Zamani-Alavijeh, S. Ojo, S.Acharya, A.Said, Ch.Li, Y.I. Mazur, Sh.Q.Yu, G.J. Salamo, RSC Advances, 14(2), 1250 (2024). https://doi.org/10.1039/D3RA06774B |
||||
8. A. Portavoce, H.Khelidj, N.Oueldna, S.Amhil, M.Bertoglio, D.Mangelinck, L. Essaleh, K. Hoummada. Materialia,14,100873 (2020). https://doi.org/10.1016/j.mtla.2020.100873 |
||||
9. H. Zhao, G.Lin, Ch.Han, R.Hickey, T.Zhama, P.Cui, T.Deroy, X.Feng, Ch.Ni, Y.Zeng. Vacuum, 210, 111868 (2023). https://doi.org/10.1016/j.vacuum.2023.111868 |
||||
10. J.M. Hartmann, T. Marion. Materials Science in Semiconductor Processing, 169, 107893 (2024). https://doi.org/10.1016/j.mssp.2023.107893 |
||||
11. A.S.Saidov, A.Sh.Razzokov, D.V.Saparov. Letters to the Technical Physics, 28(22), 7 (2002). | ||||
12. A.Sh.Razzokov, U.P.Asatova, Sh.K. Ismoilov. Proceedings of the Republican scientific and technical conference with the participation of foreign scientists "Composite materials: Structure, properties and application". Tashkent, P.136 (2008). | ||||
13. H.Liu, Y.Jin. Procedia engineering, 215, 17 (2017). https://doi.org/10.1016/j.proeng.2017.12.150 |
||||
14. Kim Y. et al. Solar Energy Materials and Solar Cells, 166,127 (2017). https://doi.org/10.1016/j.solmat.2017.03.015 |
||||
15. A.Sh. Razzokov. International students and young scientists' conference in theoretical and experimental physics, Lviv, Ukraine. A8 (2022). | ||||
16. Y.V.Znamenshchykov, V.V.Kosyak, A.S.Opanasyuk, M.M.Kolesnyk, V.V.Grinenko, P.M.Fochuk. Functional Materials, 23(1), 32 (2016). http://dx.doi.org/10.15407/fm23.01.032 |
||||
17. A.S. Saidov, M.S. Saidov, E.A. Koshchanov. Liquid epitaxy of compensated layers of gallium arsenide and solid solutions based on it. (Fan, Tashkent) 1986, P. 16-20. | ||||
18. V.M.Andreev, L.M.Dolginov, D.N.Tretyakov. Liquid epitaxy in semiconductor device technology. M, Soviet Radio Publishing House. 1975, C. 35-44. | ||||
19. J. P.Fleurial, A.Borshchevsky. Journal of the Electrochemical Society. 137(9), 2928 (1990). https://doi.org/10.1149/1.2087101 |
||||
20. R. W. Olesinski, G. J. Abbaschian. Bulletin of Alloy Phase Diagrams, 5(3), 265 (1984). https://doi.org/10.1007/BF02868550 |
||||
21. А.Sh. Razzokov, A.S.Saidov, S.I.Petrushenko, S.V.Dukarov Functional Materials. 29(2), 202 (2022). https://doi.org/10.15407/fm29.02.202 |
||||
22. A.Sh. Razzokov. et al. Journal of Physical Studies. 26(4), 4601-1 (2022). | ||||
23. А.Sh.Razzokov. Functional Materials. 30(2),156 (2023). https://doi.org/10.15407/fm30.02.156 |
||||
24. A. Sh. Razzokov et al. Journal of Crystal Growth. 612, 127203 (2023). https://doi.org/10.1016/j.jcrysgro.2023.127203 |
||||
25. M.Ilegems, M.B. Panish. Journal Phys.Chem. Sol. 35 409 (1974). https://doi.org/10.1016/S0022-3697(74)80034-X |
||||
26. J.W Gibbs. Thermodynamic works. - M. - L.: Gostekhizdat, 1950. | ||||
27. Ye.V.Ftomov, O.V.Shekhovtsov, E.E.Badiyan, A.G.Tonkopryad. Functional Materials. 28(4), 652 (2021). https://doi.org/10.15407/fm28.04.652 | ||||
28. O.M.Suprun, G.D.Il'nitskaya, V.A.Kalenchuk, O.A.Zanevskii, S.N.Shevchuk, V.V.Lysakovskii. Functional Materials. 23(4), 552 (2016). | ||||
29. A.S.Saidov, A.Sh. Razzokov. Crystallography Reports. 67(2), 301(2022).. https://doi.org/10.1134/S106377452202014 |