Funct. Mater. 2025; 32 (1): 28-34.

doi:https://doi.org/10.15407/fm32.01.28

Growing Ge1-xSnx solid solutions on Ge, GaAs substrates

A.Sh.Razzokov1, M.A.Shonazarova2, J.A.Razzakov1

1 Urgench State University, 14 Kh.Alimdjan, Urgench, 220100, Uzbekistan
2Leipzig University, 10 Augustplatz, Leipzig 04109, Germany

Abstract: 

Single-crystal films of the Ge1-xSnx solid solution were grown in the temperature range of 893-723 K at a cooling rate of 0.5-1.5 K/min from a limited tin solution-melt. The substrates were Ge(111) and GaAs(100) with a carrier concentration of n=(1÷5)·1017cm–3, n=(4÷7)·1017cm-3, respectively. The gap between the substrates was 0.65÷1.2 mm. The technological conditions for obtaining a GaAs- Ge1-xSnx heterostructure with a smooth substrate-film boundary were achieved, while the supercooling temperature was T=6.2 °C. The single crystallinity of the Ge1-xSnx 0 ≤ x ≤0.03) film was determined by X-ray diffractometry. The film photosensitivity covers the spectral region of 0.5-1.9 eV.

Keywords: 
epitaxial layer, heterostructure, solid solution, hypothermia.
References: 
1. Ch.Tan, S.Ke, J.Lv, Y.Huang, D.Peng, Zh.Duan, Y.Wu, J.Yang, F.Lin, Ch.Wang. Applied Surface Science, 657, 159707 (2024).
https://doi.org/10.1016/j.apsusc.2024.159707
 
2. N.Taoka, G.Capellini, V.Schlykow, M.Mntanari, P.Zaumseil, O.Nakatsuka, Sh. Zaima, Th.Schroeder. Materials Science in Semiconductor Processing. 70, 139 (2017).
https://doi.org/10.1016/j.mssp.2017.07.013
 
3. Y.Wang, L.Zhang, Z.Huang, Ch.Li, S.Chen, W.Huang, J.Xu, J.Wang. Materials Science in Semiconductor Processing. 88, 28 (2018).
https://doi.org/10.1016/j.mssp.2018.07.030
 
4. H.Groiss, M.Glaser, M.Schatzl, M.Brehm, D.Gerthsen, D.Roth, P.Bauer, F. Schäffler. Scientific Reports, 7, 16114 (2017).
https://doi.org/10.1038/s41598-017-16356-8
 
5. D.Gayakwad, D.Singh, R.Kumar, Y.I.Mazur Sh.Q.Yu, G.J.Salamo, S.Mahapatra, K.R.Khiangte. Journal of Crystal Growth, 618, 127306 (2023).
https://doi.org/10.1016/j.jcrysgro.2023.127306
 
6. Sh.Shibayama, K.Takagi, M.Sakashita, M.Kurosawa, O.Nakatsuka. Materials Science in Semiconductor Processing. 176, 108302 (2024).
https://doi.org/10.1016/j.mssp.2024.108302
 
7. C.Gunder, F.Maia de Oliveira, E.Wangila, H.Stanchu, M.Zamani-Alavijeh, S. Ojo, S.Acharya, A.Said, Ch.Li, Y.I. Mazur, Sh.Q.Yu, G.J. Salamo, RSC Advances, 14(2), 1250 (2024).
https://doi.org/10.1039/D3RA06774B
 
8. A. Portavoce, H.Khelidj, N.Oueldna, S.Amhil, M.Bertoglio, D.Mangelinck, L. Essaleh, K. Hoummada. Materialia,14,100873 (2020).
https://doi.org/10.1016/j.mtla.2020.100873
 
9. H. Zhao, G.Lin, Ch.Han, R.Hickey, T.Zhama, P.Cui, T.Deroy, X.Feng, Ch.Ni, Y.Zeng. Vacuum, 210, 111868 (2023).
https://doi.org/10.1016/j.vacuum.2023.111868
 
10. J.M. Hartmann, T. Marion. Materials Science in Semiconductor Processing, 169, 107893 (2024).
https://doi.org/10.1016/j.mssp.2023.107893
 
11. A.S.Saidov, A.Sh.Razzokov, D.V.Saparov. Letters to the Technical Physics, 28(22), 7 (2002).
 
12. A.Sh.Razzokov, U.P.Asatova, Sh.K. Ismoilov. Proceedings of the Republican scientific and technical conference with the participation of foreign scientists "Composite materials: Structure, properties and application". Tashkent, P.136 (2008).
 
13. H.Liu, Y.Jin. Procedia engineering, 215, 17 (2017).
https://doi.org/10.1016/j.proeng.2017.12.150
 
14. Kim Y. et al. Solar Energy Materials and Solar Cells, 166,127 (2017).
https://doi.org/10.1016/j.solmat.2017.03.015
 
15. A.Sh. Razzokov. International students and young scientists' conference in theoretical and experimental physics, Lviv, Ukraine. A8 (2022).
 
16. Y.V.Znamenshchykov, V.V.Kosyak, A.S.Opanasyuk, M.M.Kolesnyk, V.V.Grinenko, P.M.Fochuk. Functional Materials, 23(1), 32 (2016).
 http://dx.doi.org/10.15407/fm23.01.032
 
17. A.S. Saidov, M.S. Saidov, E.A. Koshchanov. Liquid epitaxy of compensated layers of gallium arsenide and solid solutions based on it. (Fan, Tashkent) 1986, P. 16-20.
 
18. V.M.Andreev, L.M.Dolginov, D.N.Tretyakov. Liquid epitaxy in semiconductor device technology. M, Soviet Radio Publishing House. 1975, C. 35-44.
 
19. J. P.Fleurial, A.Borshchevsky. Journal of the Electrochemical Society. 137(9), 2928 (1990).
https://doi.org/10.1149/1.2087101
 
20. R. W. Olesinski, G. J. Abbaschian. Bulletin of Alloy Phase Diagrams, 5(3), 265 (1984).
https://doi.org/10.1007/BF02868550
 
21. А.Sh. Razzokov, A.S.Saidov, S.I.Petrushenko, S.V.Dukarov Functional Materials. 29(2), 202 (2022).
https://doi.org/10.15407/fm29.02.202
 
22. A.Sh. Razzokov. et al. Journal of Physical Studies. 26(4), 4601-1 (2022).
 
23. А.Sh.Razzokov. Functional Materials. 30(2),156 (2023).
 https://doi.org/10.15407/fm30.02.156
 
24. A. Sh. Razzokov et al. Journal of Crystal Growth. 612, 127203 (2023).
https://doi.org/10.1016/j.jcrysgro.2023.127203
 
25. M.Ilegems, M.B. Panish. Journal Phys.Chem. Sol. 35 409 (1974).
https://doi.org/10.1016/S0022-3697(74)80034-X
 
26. J.W Gibbs. Thermodynamic works. - M. - L.: Gostekhizdat, 1950.
 
27. Ye.V.Ftomov, O.V.Shekhovtsov, E.E.Badiyan, A.G.Tonkopryad. Functional Materials. 28(4), 652 (2021).   https://doi.org/10.15407/fm28.04.652
 
28. O.M.Suprun, G.D.Il'nitskaya, V.A.Kalenchuk, O.A.Zanevskii, S.N.Shevchuk, V.V.Lysakovskii. Functional Materials. 23(4), 552 (2016).
 
29. A.S.Saidov, A.Sh. Razzokov. Crystallography Reports. 67(2), 301(2022)..
https://doi.org/10.1134/S106377452202014

Current number: