Funct. Mater. 2025; 32 (1): 56-62.

doi:https://doi.org/10.15407/fm32.01.56

High temperature oxidation of AlB12-Al electric spark coatings on Steel 45

A.P.Umanskyi1, V.B.Muratov1, V.E.Sheludko1, T.V.Khomko1, I.S.Martsenyuk1, M.A.Vasilkovskaya1, V.V.Kremenitsky2

1 I.N. Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Omelyana Pritsaka (Krzhyzhanovsky) Str., 03142 Kyiv, Ukraine
2 Technical Center, National Academy of Sciences of Ukraine,13 Pokrovskaya Str., 04070 Kyiv, Ukraine

Abstract: 

The article deals with the study of the resistance of electrospark coatings of the composition AlB12-50 wt.% Al to high-temperature oxidation. The coatings are applied to Steel 45 using an ALIER-52 installation (mode 4). High-temperature oxidation of coated Steel 45 samples was carried out in a Nabertherm furnace, in the temperature range of 500, 600, 700, 800, 900 and 1000oC, in air with exposure at each temperature for 1 hour. The structure of the coatings was studied using a JEOL JSM-6490 LV SEM equipped with an INKA Energy 350XT energy-dispersive spectrometer. The microhardness of the coatings was measured using a PMT-3 microhardness tester (P = 0.5 N). After oxidation, phases of Fe-Al intermetallic compounds, aluminum nitrides of different stoichiometric compositions, AlB12 and Al2O3 were found in the coating. The weight gain of the coated sample was found to be much less than that without the coating; this is explained by the formation of compounds that are resistant to high-temperature oxidation. The developed coatings can be used to protect parts operating under high-temperature oxidation conditions.

Keywords: 
AlB<sub>12</sub>-Al electric spark coating, High-temperature oxidation, Microstructure, SEM, Microhardness
References: 
1. Handbook of Environmental Degradation of Materials. 3d Edition. Ed. by M.Kutz, Elsevier, William Andrew, (2018). 
https:/doi.org/10.1016/C2016-0-02081-8.
 
2. High Temperature Corrosion. Ed. by Z.Ahmad, IntechOpen, London, UK (2016).
 
https:/doi.org/10.5772/61546.
 
3. N.Birks, G.H.Meier, F.S.Pettit. Introduction to the High-Temperature Oxidation of Metals. 2d Edition, Cambridge University Press, Cambridge, UK (2006).
https://doi.org/10.1017/CBO9781139163903
 
 
4. Z.Li, W.Gao, P.Kwok et al., High Temp. Mater. Proc., 19, 443 (2000).
https://doi.org/10.1515/HTMP.2000.19.6.443
 
 
5. Z.O.Dolgiy, W.Z.Shao, A.V.Kozyr et al., Adv. Mater. Res., 538-541, 175 (2012).
https://doi.org/10.4028/www.scientific.net/AMR.538-541.175
 
 
6. S.A.Pyachin, A.A.Burkov, N.M.Vlasova et al., Sci. pap. Komsomolsk-na-Amure State Univ., I-1, 49 (2017).
https://doi.org/10.17084/2017.I-1(29).8
 
 
7. A.V.Kozyr, L.A.Konevtsov, S.V.Konovalov et al., Letters on Materials, 8, 140 (2018) [in Russian].
https://doi.org/10.22226/2410-3535-2018-2-140-145
 
 
8. J.Wang, M.Zhang, S.Dai et al., Coatings, 13, 1473 (2023). 
https://doi.org/10.3390/coatings13081473
 
9. A.E.Gitlevich, V.V.Mikhailov, N.Ya.Parkansky et al. Electrospark Alloying of Metal Surfaces, Ştiinţa, Chisinau (1985).
 
10. A.D.Verkhoturov, I.A.Podchernyaeva, L.F.Pryadko et al., Electrode Materials for Electrospark Alloying, Nauka, Moscow (1988).
 
11. A.D.Verkhoturov, S.V.Nikolenko, Strength. Technol. Coat., 2, 13 (2010).
 
12. M.S.Storozhenko,O.P.Umanskyi, V.B.Tarelnyk et al., Powder Metall. Met.Ceram., 59, 330 (2020).
https://doi.org/10.1007/s11106-020-00166-1
 
 
13. O.O.Vasiliev, V.B.Muratov, T.I.Duda, Physics and Chemistry of Solid State, 18, 358 (2017).
https://doi.org/10.15330/pcss.18.3.358-364
 
 
14. P.S.Kisly, V.A.Neronov, T.A.Prikhna et al, Aluminum Borides, Nauk. Dumka, Kiev (1990).
 
15. A.P.Umanskyi, M.S.Storozhenko, V.E.Sheludko et al., Functional Materials, 28, 694 (2021).
 
https:/doi.org/10.15407/fm28.04.694.
 
16. A.P.Umanskyi, M.S.Storozhenko, V.E.Sheludko et al., Metallophys. Adv. Technol., 43, 1443 (2021). https:/doi.org/10.15407/mfint.43.11.1443.
https://doi.org/10.1080/14432471.2021.1935710
 
17. A.P.Umanskyi, A.I.Dukhota, V.E.Sheludko et al., Functional Materials, 29, 514 (2022). https:/doi.org/10.15407/fm29.04.514.
 
18. UA Patent 107193 (2016).
 
19. P.F.Tortorelli, K.Natesan, Mater. Sci. & Eng. A., 258, 115 (1998).
https://doi.org/10.1016/S0921-5093(98)00924-1
 
20. M.Zamanzade, A.Barnoush, and C.Motz, Crystals, 6, Article Number 10 (2016).
https://doi.org/10.3390/cryst6010010
 
 
21. Y.Du, Q.Li, S.Chen et al., Coatings, 12, Article Number 1641 (2022). https://doi.org/10.3390/ coatings12111641.
 
22. M.Kitano, H.Ishii, Y.Shirai et al, J. Vac. Sci. Technol. A., 29, Article Number 021002 (2011). 
https://doi.org/10.1116/1.3543709
 
23. J.Małecka., High Temp. Mater. Proc., 34, 35 (2015).
https://doi.org/10.1515/htmp-2013-0112
 
 
24. S.Rajendran Pillai, P.Shankar, R.V.Subba Rao et al., Mater. Sci. Technol., 17, 1249 (2001).
https://doi.org/10.1179/026708301101509151
 
25. M.Ali Abro, J.Hahn, and Dong Bok Lee., Korean J. Met. Mater., 56, 350 (2018). https://doi.org/10.3365/KJMM.2018.56.5.350
 
26. S.-F.Wang, C.Zhang, G.Sun et al., Opt. Mater., 36, 482 (2013). https://doi.org/10.1016/j.optmat.2013.10.014
 
27. M.L.Whittaker, H.Y.Sohn, R.A.Cutler., J. Solid State Chem., 207, 163 (2013).
https://doi.org/10.1016/j.jssc.2013.09.028
 
 
28. V.V.Vasilev, A.A.Luchaninov, V.E.Strel'nitsky, VANT. Ser. Physics of radiation damage and radiation materials science (86), 3, 167 (2005)
 
29. V.S.Kovalenko, A.D.Verkhoturov, L.F.Golovko et al., Laser and Electroerosion Hardening of Materials, Nauka, Moscow (1986).
 
30. S.Okada, T.Atoda, J. of the Ceram. Soc. Jap., 88, 547 (1980).
https://doi.org/10.2109/jcersj1950.88.1021_547
 
31. R.R.Altunin, E.T.Moiseenko, and S.M.Zharkov, Phys. Solid State, 62, 200 (2020).
https://doi.org/10.1134/S1063783420010059
 
 
32. J.Arbeiter, M.Vončina, B.Šetina Batič, J.Medved, Materials, 14, Article Number 7208 (2021). 
https://doi.org/10.3390/ma14237208
 

Current number: