Funct. Mater. 2025; 32 (1): 87-96.
Low-cost ceramic membrane supports based on ukrainian kaolin and saponite
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prospect Beresteiskyi, Kyiv 03056, Ukraine
The synthesis of ceramic membranes using natural raw materials, especially kaolin and saponite clays, is a rational approach to reducing the cost of ceramic membranes for water purification. This study investigated the effect of sintering temperature and phase composition of the initial mixture on the physicochemical, mechanical, and transport properties of ceramic membranes based on kaolin and saponite. The initial clay components and ceramic membrane matrices obtained from them were characterised using diffraction methods, FTIR and thermal analysis. It was shown that the kaolin phase primarily determines the structural-adsorption characteristics of the ceramic membrane matrices. The determined mechanical properties indicate a significant influence of temperature and composition of the initial mixture on the flexural strength limit, with the selected ceramic matrices being in the range of 10–16 MPa. The electrical properties suggest potential resistance to contamination during operation. The revealed a macroporous structure of the obtained membranes provides their good permeability for pure water.
1. M. Sheikh, M. Pazirofteh, M. Dehghani, M. Asghari, M. Rezakazemi, C. Valderrama, J.L. Cortina, Chem. Eng. J., 391, 123475 (2020) https://doi.org/10.1016/j.cej.2019.123475 |
||||
2. X. Xu, Y. Yang, T. Liu, B. Chu. Giant. 10, 100099 (2022) https://doi.org/10.1016/j.giant.2022.100099 |
||||
3. J. Schnittger, J. McCutcheon, T. Hoyer, M. Weyd, G. Fischer, P. Puhlfürß, M. Halisch, I. Voigt, A. Lerch, J. Memb. Sci. 618, 118678 (2021) https://doi.org/10.1016/j.memsci.2020.118678 |
||||
4. C.S. Raota, S. Lotfi, R. Lyubimenko, B.S. Richards, A.I. Schäfer, J. Memb. Sci. 686, 121944 (2023) https://doi.org/10.1016/j.memsci.2023.121944 |
||||
5. Z. He, Z. Lyu, Q. Gu, L. Zhang, J. Wang, Colloids Surfaces A Physicochem. Eng. Asp., 578, 123513 (2019) https://doi.org/10.1016/j.colsurfa.2019.05.074 |
||||
6. M.B. Asif,, Z. Zhang, Chem. Eng. J., 418, 129481 (2021) https://doi.org/10.1016/j.cej.2021.129481 |
||||
7. C. Li, W. Sun, Z. Lu, X. Ao, S. Li, Water Res., 175, 115674 (2020) https://doi.org/10.1016/j.watres.2020.115674 |
||||
8. B. Jafari, E. Rezaei, M.J. Dianat, M. Abbasi, S.A. Hashemifard, A. Khosravi, M. Sillanpää, Ceram. Int., 47, 24 (2021) https://doi.org/10.1016/j.ceramint.2021.09.005 |
||||
9. N.M.A. Omar, M.H.D. Othman, Z.S. Tai, T.A. Kurniawan, T. El-badawy, P.S. Goh, N.H. Othman, M.A. Rahman, J. Jaafar, A.F. Ismail, J. Eur. Ceram. Soc., 42, 13 (2022) | ||||
10. A. Elgamouz, N. Tijani, Microporous Mesoporous Mater., 271 (2018) https://doi.org/10.1016/j.micromeso.2018.05.030 |
||||
11. Samadi, A., Gao, L., Kong, L., Orooji, Y., Zhao, S., Resour. Conserv. Recycl., 185, 106497 (2022) https://doi.org/10.1016/j.resconrec.2022.106497 |
||||
12. B. Ghouil, A. Harabi, F. Bouzerara, B. Boudaira, A. Guechi, M.M. Demir, A. Figoli, Mater. Charact., 103 (2015) https://doi.org/10.1016/j.matchar.2015.03.009 |
||||
13. L.F. Han, Z.L. Xu, Y. Cao, Y.M. Wei, H.T. Xu, J. Memb. Sci., 372 (2011) | ||||
14. J.B. Kowalska, T. Zaleski, A. Józefowska, R. Mazurek, Catena, 174 (2019) https://doi.org/10.1016/j.catena.2018.11.025 |
||||
15. E. Eray, V.M. Candelario, V. Boffa, H. Safafar, D.N. Østedgaard-Munck, N. Zahrtmann, H. Kadrispahic, M.K. Jørgensen, Chem. Eng. J., 414, 128826 (2021) https://doi.org/10.1016/j.cej.2021.128826 |
||||
16. I. Hedfi, N. Hamdi, M.A. Rodriguez, E. Srasra, Ceram. Int., 42, 4 (2016) https://doi.org/10.1016/j.ceramint.2015.12.023 |
||||
17. S.K. Hubadillah, M.H.D. Othman, A.F. Ismail, M.A. Rahman, J. Jaafar, J. Teknol., 79 (2017) https://doi.org/10.11113/jt.v79.10434 |
||||
18. N.H. Mohtor, M.H.D. Othman, A.F. Ismail, M.A. Rahman, J. Jaafar, N.A. Hashim, Environ. Sci. Pollut. Res., 24 (2017) https://doi.org/10.1007/s11356-017-9341-6 |
||||
19. B.K. Nandi, R. Uppaluri, M.K. Purkait, Appl. Clay Sci., 42 (2008) https://doi.org/10.1016/j.clay.2007.12.001 |
||||
20. S. Rajpoot, J.-H. Ha,, Y.-W. Kim, Ceram. Int., 47, 6, (2021) https://doi.org/10.1016/j.ceramint.2020.11.238 |
||||
21. O.I. Yanushevska, T.A. Dontsova, A.I. Aleksyk, N.V. Vlasenko, O.Z. Didenko, A.S. Nypadymka, Clays Clay Miner., 68, 5 (2020) https://doi.org/10.1007/s42860-020-00088-4 |
||||
22. B.J. Saikia, G. Parthasarathy, J. Mod. Phys., 01 (2010) https://doi.org/10.4236/jmp.2010.14031 |
||||
23. A.O. Serhiienko, T.A. Dontsova, O.I. Yanushevska, V.I. Vorobyova, G.S. Vasyliev, Mol. Cryst. Liq. Cryst., 752 (2023) https://doi.org/10.1080/15421406.2022.2091279 |
||||
24. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, IUPAC Technical Report, Pure Appl. Chem., 87 (2015) https://doi.org/10.1515/pac-2014-1117 |
||||
25. N. Mykhailenko, O. Makarchuk, T. Dontsova, S. Gorobets, I. Astrelin, Eastern-European J. Enterp. Technol., 4, 76 (2015) | ||||
26. H. Sokol, M. Sprynskyy, A. Ganzyuk, V. Raks, B. Buszewski, Colloids and Interfaces, 3 (2019) https://doi.org/10.3390/colloids3010010 |
||||
27. I. Ohnishi1, K. Tomeoka, Meteorit. Planet. Sci., 42, 1, (2007) https://doi.org/10.1111/j.1945-5100.2007.tb00217.x |
||||
28. J. Wang, X. Wang, Q. Fu, J. Fu, F. Zhai, Shuang Li, Ceram. Int., 49, 15 (2023) https://doi.org/10.1016/j.ceramint.2023.05.102 |
||||
29. Zhou Zhentao, A. Sukhoivanenko, T. Dontsova, Funct. Mater. 31 (4): 630, 2024. https://doi.org/10.15407/fm31.04.630 |
||||