Funct. Mater. 2025; 32 (1): 87-96.

doi:https://doi.org/10.15407/fm32.01.87

Low-cost ceramic membrane supports based on ukrainian kaolin and saponite

Y. Molchan, L. Bohdan, S. Kyrii, O. Tymoshenko, I. Pylypenko, A. Burmak, G. Vasyliev, T. Dontsova

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prospect Beresteiskyi, Kyiv 03056, Ukraine

Abstract: 

The synthesis of ceramic membranes using natural raw materials, especially kaolin and saponite clays, is a rational approach to reducing the cost of ceramic membranes for water purification. This study investigated the effect of sintering temperature and phase composition of the initial mixture on the physicochemical, mechanical, and transport properties of ceramic membranes based on kaolin and saponite. The initial clay components and ceramic membrane matrices obtained from them were characterised using diffraction methods, FTIR and thermal analysis. It was shown that the kaolin phase primarily determines the structural-adsorption characteristics of the ceramic membrane matrices. The determined mechanical properties indicate a significant influence of temperature and composition of the initial mixture on the flexural strength limit, with the selected ceramic matrices being in the range of 10–16 MPa. The electrical properties suggest potential resistance to contamination during operation. The revealed a macroporous structure of the obtained membranes provides their good permeability for pure water.

Keywords: 
ceramic membrane supports, kaolin, saponite, mechanical and transport properties.
References: 
1. M. Sheikh, M. Pazirofteh, M. Dehghani, M. Asghari, M. Rezakazemi, C. Valderrama, J.L. Cortina, Chem. Eng. J., 391, 123475 (2020)
https://doi.org/10.1016/j.cej.2019.123475
 
2. X. Xu, Y. Yang, T. Liu, B. Chu. Giant. 10, 100099 (2022)
https://doi.org/10.1016/j.giant.2022.100099
 
3. J. Schnittger, J. McCutcheon, T. Hoyer, M. Weyd, G. Fischer, P. Puhlfürß, M. Halisch, I. Voigt, A. Lerch, J. Memb. Sci. 618, 118678 (2021)
https://doi.org/10.1016/j.memsci.2020.118678
 
4. C.S. Raota, S. Lotfi, R. Lyubimenko, B.S. Richards, A.I. Schäfer, J. Memb. Sci. 686, 121944 (2023)
https://doi.org/10.1016/j.memsci.2023.121944
 
5. Z. He, Z. Lyu, Q. Gu, L. Zhang, J. Wang, Colloids Surfaces A Physicochem. Eng. Asp., 578, 123513 (2019)
https://doi.org/10.1016/j.colsurfa.2019.05.074
 
6. M.B. Asif,, Z. Zhang, Chem. Eng. J., 418, 129481 (2021)
https://doi.org/10.1016/j.cej.2021.129481
 
7. C. Li, W. Sun, Z. Lu, X. Ao, S. Li, Water Res., 175, 115674 (2020)
https://doi.org/10.1016/j.watres.2020.115674
 
8. B. Jafari, E. Rezaei, M.J. Dianat, M. Abbasi, S.A. Hashemifard, A. Khosravi, M. Sillanpää, Ceram. Int., 47, 24 (2021)
https://doi.org/10.1016/j.ceramint.2021.09.005
 
9. N.M.A. Omar, M.H.D. Othman, Z.S. Tai, T.A. Kurniawan, T. El-badawy, P.S. Goh, N.H. Othman, M.A. Rahman, J. Jaafar, A.F. Ismail, J. Eur. Ceram. Soc., 42, 13 (2022)
 
10. A. Elgamouz, N. Tijani, Microporous Mesoporous Mater., 271 (2018)
https://doi.org/10.1016/j.micromeso.2018.05.030
 
11. Samadi, A., Gao, L., Kong, L., Orooji, Y., Zhao, S., Resour. Conserv. Recycl., 185, 106497 (2022)
https://doi.org/10.1016/j.resconrec.2022.106497
 
12. B. Ghouil, A. Harabi, F. Bouzerara, B. Boudaira, A. Guechi, M.M. Demir, A. Figoli, Mater. Charact., 103 (2015)
https://doi.org/10.1016/j.matchar.2015.03.009
 
13. L.F. Han, Z.L. Xu, Y. Cao, Y.M. Wei, H.T. Xu, J. Memb. Sci., 372 (2011)
 
14. J.B. Kowalska, T. Zaleski, A. Józefowska, R. Mazurek, Catena, 174 (2019)
https://doi.org/10.1016/j.catena.2018.11.025
 
15. E. Eray, V.M. Candelario, V. Boffa, H. Safafar, D.N. Østedgaard-Munck, N. Zahrtmann, H. Kadrispahic, M.K. Jørgensen, Chem. Eng. J., 414, 128826 (2021)
https://doi.org/10.1016/j.cej.2021.128826
 
16. I. Hedfi, N. Hamdi, M.A. Rodriguez, E. Srasra, Ceram. Int., 42, 4 (2016)
https://doi.org/10.1016/j.ceramint.2015.12.023
 
17. S.K. Hubadillah, M.H.D. Othman, A.F. Ismail, M.A. Rahman, J. Jaafar, J. Teknol., 79 (2017)
https://doi.org/10.11113/jt.v79.10434
 
18. N.H. Mohtor, M.H.D. Othman, A.F. Ismail, M.A. Rahman, J. Jaafar, N.A. Hashim, Environ. Sci. Pollut. Res., 24 (2017)
https://doi.org/10.1007/s11356-017-9341-6
 
19. B.K. Nandi, R. Uppaluri, M.K. Purkait, Appl. Clay Sci., 42 (2008)
https://doi.org/10.1016/j.clay.2007.12.001
 
20. S. Rajpoot, J.-H. Ha,, Y.-W. Kim, Ceram. Int., 47, 6, (2021)
https://doi.org/10.1016/j.ceramint.2020.11.238
 
21. O.I. Yanushevska, T.A. Dontsova, A.I. Aleksyk, N.V. Vlasenko, O.Z. Didenko, A.S. Nypadymka, Clays Clay Miner., 68, 5 (2020)
https://doi.org/10.1007/s42860-020-00088-4
 
22. B.J. Saikia, G. Parthasarathy, J. Mod. Phys., 01 (2010)
https://doi.org/10.4236/jmp.2010.14031
 
23. A.O. Serhiienko, T.A. Dontsova, O.I. Yanushevska, V.I. Vorobyova, G.S. Vasyliev, Mol. Cryst. Liq. Cryst., 752 (2023)
https://doi.org/10.1080/15421406.2022.2091279
 
24. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, IUPAC Technical Report, Pure Appl. Chem., 87 (2015)
https://doi.org/10.1515/pac-2014-1117
 
25. N. Mykhailenko, O. Makarchuk, T. Dontsova, S. Gorobets, I. Astrelin, Eastern-European J. Enterp. Technol., 4, 76 (2015)
 
26. H. Sokol, M. Sprynskyy, A. Ganzyuk, V. Raks, B. Buszewski, Colloids and Interfaces, 3 (2019)
https://doi.org/10.3390/colloids3010010
 
27. I. Ohnishi1, K. Tomeoka, Meteorit. Planet. Sci., 42, 1, (2007)
https://doi.org/10.1111/j.1945-5100.2007.tb00217.x
 
28. J. Wang, X. Wang, Q. Fu, J. Fu, F. Zhai, Shuang Li, Ceram. Int., 49, 15 (2023)
https://doi.org/10.1016/j.ceramint.2023.05.102
 
29. Zhou Zhentao, A. Sukhoivanenko, T. Dontsova, Funct. Mater. 31 (4): 630, 2024.
https://doi.org/10.15407/fm31.04.630
 

Current number: