Funct. Mater. 2025; 32 (1): 97-107.

doi:https://doi.org/10.15407/fm32.01.97

Application of cellulose nanofibrils in polyvinyl alcohol composite films

Linjuan Duan, Chunxia Chen, Xuan Hou, Bei Liu

Yuncheng Vocational and Technical University, Shanxi, Yuncheng 0443000, China

Abstract: 

Fenton cellulose nanofibrils (F-CNF) were prepared by Fenton oxidation with the followed homogenization and then F-CNF /PVA composite films with the F-CNF additives from 1% to 20% were prepared by solution casting method. Scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), Fourier transform infrared spectroscopy (FTIR), universal tensile testing machine, swelling property detection, thermogravimetric analysis and soil burial degradation rate test were used to characterize the microstructure, chemical structure, mechanical properties, hygroscopicity, thermal stability and biodegradability of the composites. The results showed that a large number of hydrogen bonds were formed between F-CNF and PVA molecules and an acetal reaction occurred. F-CNF can be uniformly dispersed in PVA matrix, and both have good interfacial compatibility. After the addition of F-CNF, the tensile strength and elastic modulus of the composite films were significantly improved, the water absorption of the composite material was reduced, and its thermal stability was improved. When the amount of F-CNF was 15%, the tensile strength and Young’s modulus of the composite films were 65.27 MPa and 1460.32 MPa, respectively, which were 217.77% and 830.69% higher than those of pure PVA.

Keywords: 
Cellulose nanofibrils; Polyvinyl alcohol; Composite films; Fenton oxidation
References: 
1. O. Nechyporchuk, M. N. Belgacem, J.Bras, Industrial Crops and Products, 93, 2, (2016).
https://doi.org/10.1016/j.indcrop.2016.02.016
 
2. ZHANG Sihang, FU Runfang, DONG Liqin, et al. China Pulp Paper, 36(1), 67, (2017)
 
3. M. Bulota, K. Kreitsmann, M. Hughes, et al. Journal of Applied Polymer Science, 126, 448 (2012).
https://doi.org/10.1002/app.36787
 
4. Azizi Samir MAS, F. Alloin, M. Paillet, et al., Macromolecules, 37(11), 4313 (2004).
https://doi.org/10.1021/ma035939u
 
5. T. Zimmermann, E. Pöhler, T. Geig, Advanced Engineering Materials, 6(9), 754 (2004).
https://doi.org/10.1002/adem.200400097
 
6. T. Zimmermann, E. Pöhler, P. Schwaller, Advanced Engineering Materials, 7(12), 1156, (2005).
https://doi.org/10.1002/adem.200500157
 
7. L.I. Qun, WANG Aijiao, WANG Zehai.A Method for Preparation of Nanocellulose by Iiron-catalyzed Hydrogen Peroxide Oxidation.CN, 2017113435931.2018-01-01.
 
8. Q. Li, A.J. Wang, K.Y. Long, et al. ACS Sustainable Chemistry & Engineering, 23(2), 1129, (2018).
 
9. D.F. Guay, B.J.W. Cole, R.C. Fort, et al., Journal of Wood Chemistry and Technology, 20(4), 375, (2000).
https://doi.org/10.1080/02773810009351890
 
10. D.F. Guay, B.J.W. Cole, R.C. Fort, et al., Journal of Wood Chemistry and Technology,, 21(1), 67, (2001).
https://doi.org/10.1081/WCT-100102655
 
11. DUAN Lin-juan, DUAN Yan, M.A. Wei, et al. China Pulp & Paper, 39 (1), 9, (2020).
 
12. E. Fortunati, D. Puglia, M. Monti, et al., Journal of Applied Polymer Science, 128(5), 3220, (2013).
https://doi.org/10.1002/app.38524
 
13. A.J. Uddin, J. Araki, Y.Gotoh, Biomacromolecules, 12(3), 617 (2011).
https://doi.org/10.1021/bm101280f
 
14. S. Dong, M. Roman, Journal of the American Chemical Society, 129(45), 13810, (2007).
https://doi.org/10.1021/ja076196l
 
15. Duan Linjuan, Liu Rongrong, Li Qun, Starch-starke, 72(11-12), 1900259, (2020).
https://doi.org/10.1002/star.201900259
 
16. HUANG Xiaolei, LIU Wen, LIU Qunhua, et al.China Pulp Paper, 34(1), 18 (2015).
 
17. R.T. O'Connor, E.F. DuPré, D. Mitcham, Textile Research Journal, 28, 382, (1958).
https://doi.org/10.1177/004051755802800503
 
18. S. Ostovareh, K. Karimi, A. Zamani.Industrial Crops and Products, 66, 170, (2015).
https://doi.org/10.1016/j.indcrop.2014.12.023
 
19. BAI Lu, ZHANG Li-Ping, QU Ping, et al. Chemical Journal of Chinese Universities, 32(4), 984, (2011).
 
20. Chen Yangmei, Wang Yan, Ma Yongwen, et al., Cellulose, 17(2), 329, (2010).
https://doi.org/10.1007/s10570-009-9368-z
 
21. M. Schwanninger, J.C. Rodrigues, H. Pereirac, et al.Vibrational Spectroscopy, 36, 23, (2004).
https://doi.org/10.1016/j.vibspec.2004.02.003
 
22. L.V. Hui-lin, M.A. Yong-wen, WAN Jin-quan, et al. Transactions of China Pulp and Paper, 26(1), 1, (2011).
 
23. SangYoun Oh, Dong Il Yoo, Younsook Shinet, et al. Carbohydrate Research, 340, 2376, (2005).
https://doi.org/10.1016/j.carres.2005.08.007
 
24. J. Wang, C. Gao, Y. Zhang, et al. Materials Science & Engineering C, 30, 214, (2010).
https://doi.org/10.1016/j.msec.2009.10.006
 
25. L.E. Millon, C.J. Oates, W.K. Wan, J Biomed Mater Res Part B: Appl Biomater, 90B(2), 922, (2009).
https://doi.org/10.1002/jbm.b.31364
 
26. F. Vilaseca, J.A. Mendez, J.P. Lopez, et al., Chemical Engineering Journal, 138(1), 586, (2008).
https://doi.org/10.1016/j.cej.2007.07.066
 
27. A. Kelly, W.R. Tyson, Journal of the Mechanics and Physics of Solids, 13(6), 329, (1965).
https://doi.org/10.1016/0022-5096(65)90035-9
 
28. Azizi Samir MAS, F. Alloin, M. Paillet, et al. Macromolecules, 37(11), 4313, (2004).
https://doi.org/10.1021/ma035939u
 
29. T. Zimmermann, E. Pöhler, T. Geiger, Advanced Engineering Materials, 6(9), 754. (2004).
https://doi.org/10.1002/adem.200400097
 
30. T. Zimmermann, E. Pöhler, P. Schwaller, Advanced Engineering Materials, 7(12), 1156, (2005).
https://doi.org/10.1002/adem.200500157
 
31. V. Sanna V. Sauli H. Harri et al., Cellulose, 21, 3561, (2014).
https://doi.org/10.1007/s10570-014-0347-7
 
32. Q. Kaiyan N.N. Anil, Composites Science and Technology, 72, 1588, (2012)
https://doi.org/10.1016/j.compscitech.2012.06.010
 
33. K. Abe S. IwamotoH. Yano, Biomacromolecules, 8(10), 3276, (2007).
https://doi.org/10.1021/bm700624p

Current number: