Funct. Mater. 2025; 32 (2): 184-189.

doi:https://doi.org/10.15407/fm32.02.184

Radiation-modified n-Ge and n-Si single crystals for IR equipment

S.V. Luniov, D.A. Zakharchuk, L.Yu. Zabrodotska

Lutsk National Technical University, 75 Lvivska Str., Lutsk 43018, Ukraine

Abstract: 

IR absorption spectra for n-Ge and n-Si single crystals, irradiated by fast electron flows, were investigated at room temperature. Additional absorption bands in the long-wave IR range, which are associated with the created radiation defects, were identified in these spectra after irradiation. In particular, in germanium: the absorption band at 15 µm for the VOiI2Ge complex (vacancy-oxygen complex, two interstitial germanium atoms); in silicon: the absorption band at 12 µm for the A-center (vacancy-interstitial oxygen atom complex) and the A-center, modified by the phosphorus impurity (VOiP complex), and the absorption band at 11.6 µm, which is associated with the CiOi complex (interstitial carbon-oxygen). The analysis of absorption spectra for the irradiated germanium and silicon single crystals and the calculations of the relative values of the photosensitivity coefficients for the obtained absorption bands show that the photosensitivity of these single crystals in the long-wave range of IR radiation increases with increasing the electron irradiation flow. This is due to an increase in the concentration of created radiation defects, which are absorption centres for IR radiation and, accordingly, determine the value of the photosensitivity coefficient. Electron-irradiated n-Ge and n-Si single crystals can be alternative materials to much more expensive and "cooled" narrow-gap semiconductor materials which are used in the devices controlling long-wave IR radiation.

Keywords: 
irradiated n-Ge and n-Si single crystals, radiation defects, photosensitivity coefficient, IR radiation.
References: 

1. B. Nabet, Photodetectors: Materials, Devices and Applications, Woodhead publishing, (2023), 512.

2. G. Kropotov, V. Rogalin, I. Kaplunov, Crystals, 14(9), 796 (2024).

3. J. K. Poon at al., Advances in Optics and Photonics, 16(1), 1 (2024).

4. D. Benedikovic at al., Nanophotonics, 10(3), 1059 (2021).

5. C. Xiang at al., Applied Physics Letters, 118(22), 220501 (2021)

6. S. Y. Siew at al., J.Lightwave Technology, 39(13), 4374 (2021).

7. S. Lee, Advanced material and device applications with germanium, IntechOpen, (2018), p. 550.

8. S. Mane, International Journal of All Research Education and Scientific Methods, 10, 76 (2022).

9. P.I. Baranskii, A.E. Belyaev, G.P. Gaidar, Kinetic Effects in Multi-Valley Semiconductors, Naukova Dumka: Kyiv, (2019), p. 448.

10. H. Klym, A. Ingram, O. Shpotyuk, O. Hotra, A. Popov, Radiation Measurements, 90, 117 (2016).

11. H. Klym, I. Karbovnyk, M. Guidi, O. Hotra, A. Popov, Nanoscale research letters, 11, 132.1 (2016).

12. A. El-Raheem, H. Abd El Rahman, E. Shaaban, N. Hamed, M. M. Wakkad, SSRN Electronic Journal, 4022315 (2022).

13. H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, I. Hadzaman, Physica Status Solidi c, 4, 715 (2007).

14. C. Chen, S. Min, Q. Guo, Z. Xia, D. Liu, F. Xia, Nano Letters, 21, 8385 (2021).

15. J. Duran, Silicon-based infrared photodetectors for low-cost imaging applications, Thesis of Doctor of Philosophy in Electro-Optics, University of Dayton, Ohio, (2019), p. 177.

16. M. Wang at al., Advanced Optical Materials, 9, 2001546 (2021).

17. M.G. Bartmann at al., Nanotechnology, 33, 245201 (2022).

18. L. Reid at al., IEEE 16th International Conference on Group IV Photonics (GFP), 1 (2019)

19. L. Reid at al., IEEE 17th International Conference on Group IV Photonics (GFP), 1 (2021).

20. N.P. Khuchua at al., Nanotechnology Perceptions, 10, 91 (2014)

21. N. Khuchua at al., Solid State Phenomena, 242, 374 (2016).

22. S. V.Luniov, M. V. Khvyshchun, V. T. Maslyuk, IEEE 11th International Scientific and Practical Conference on Electronics and Information Technologies (ELIT), 295 (2019).

23. S. V. Luniov, M. V. Khvyshchun, A. I. Tsyz, V. T. Maslyuk, IEEE 12th International Conference on Electronics and Information Technologies (ELIT), 18 (2021).

24. G. Korotcenkov, Introduction in IR detectors. In Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors: Volume 2, Photodetectors. Cham: Springer International Publishing, (2023), p. 3–22.

25. Y. U. Peter, M. Cardona, Fundamentals of semiconductors: physics and materials properties, Springer Science & Business Media, (2010), p. 639.

26. V.P. Markevich at al., Applied Physics Letters, 81, 1821 (2002).

27. V.P. Markevich at al., Physica B: Condensed Matter, 340, 844 (2003).

28. S.V. Luniov, A.I. Zimych, P.F. Nazarchuk, V.T. Maslyuk, I.G. Megela, Nuclear Physics and AtomicEnergy, 17, 47 (2016).

29. S. V. Luniov, A.I. Zimych, P.F. Nazarchuk, V.T. Maslyuk, I.G. Megela, Journal of Physical Studies, 19, 4704 (2015)

30. I.A. Kaplunov, V. E. Rogalin, Photonics, 13, 88 (2019).

31. L.I. Murin, V.P. Markevich, T. Hallberg, J.L. Lindström, Sol. St. Phenomena, 69-70, 309 (1999).

32. J.M. Trombetta, G.D. Watkins, Appl. Phys. Lett., 51, 1103 (1987).

33. M.I. Gritsenko, O.O.Kobzar, Yu.V Pomozov, M.G. Sosnin, L.I. Khirunenko, Ukr. J. Phys.. 55, 222 (2010).

34. Sergiy Luniov, Andriy Zimych, Mykola Khvyshchun, Mykola Yevsiuk, Volodymyr Maslyuk, Eastern-European Journal of Enterprise Technologies, 6, 35 (2018).

35. S.V. Luniov, V.V. Lyshuk, V.T. Maslyuk, O. V. Burban, Latvian Journal of Physics and Technical Sciences, 56, 45 (2019).

36. A.V. Fedosov, S.V. Luniov, S.A. Fedosov, Ukrainian Journal of Physics, 56, 69 (2011).