Funct. Mater. 2025; 32 (2): 184-189.

doi:https://doi.org/10.15407/fm32.02.184

Radiation-modified n-Ge and n-Si single crystals for IR equipment

S.V. Luniov, D.A. Zakharchuk, L.Yu. Zabrodotska

Lutsk National Technical University, 75 Lvivska Str., Lutsk 43018, Ukraine

Abstract: 

IR absorption spectra for n-Ge and n-Si single crystals, irradiated by fast electron flows, were investigated at room temperature. Additional absorption bands in the long-wave IR range, which are associated with the created radiation defects, were identified in these spectra after irradiation. In particular, in germanium: the absorption band at 15 µm for the VOiI2Ge complex (vacancy-oxygen complex, two interstitial germanium atoms); in silicon: the absorption band at 12 µm for the A-center (vacancy-interstitial oxygen atom complex) and the A-center, modified by the phosphorus impurity (VOiP complex), and the absorption band at 11.6 µm, which is associated with the CiOi complex (interstitial carbon-oxygen). The analysis of absorption spectra for the irradiated germanium and silicon single crystals and the calculations of the relative values of the photosensitivity coefficients for the obtained absorption bands show that the photosensitivity of these single crystals in the long-wave range of IR radiation increases with increasing the electron irradiation flow. This is due to an increase in the concentration of created radiation defects, which are absorption centres for IR radiation and, accordingly, determine the value of the photosensitivity coefficient. Electron-irradiated n-Ge and n-Si single crystals can be alternative materials to much more expensive and "cooled" narrow-gap semiconductor materials which are used in the devices controlling long-wave IR radiation.

Keywords: 
irradiated n-Ge and n-Si single crystals, radiation defects, photosensitivity coefficient, IR radiation.
References: 
1. B. Nabet, Photodetectors: Materials, Devices and Applications, Woodhead publishing, (2023), 512.
 
2. G. Kropotov, V. Rogalin, I. Kaplunov, Crystals, 14(9), 796 (2024).
https://doi.org/10.3390/cryst14090796
 
3. J. K. Poon at al., Advances in Optics and Photonics, 16(1), 1 (2024).
https://doi.org/10.1364/AOP.501846
 
4. D. Benedikovic at al., Nanophotonics, 10(3), 1059 (2021).
https://doi.org/10.1515/nanoph-2020-0547
 
5. C. Xiang at al., Applied Physics Letters, 118(22), 220501 (2021)
https://doi.org/10.1063/5.0037547
 
6. S. Y. Siew at al., J.Lightwave Technology, 39(13), 4374 (2021).
https://doi.org/10.1109/JLT.2021.3066203
 
7. S. Lee, Advanced material and device applications with germanium, IntechOpen, (2018), p. 550.
https://doi.org/10.5772/intechopen.80872
 
8. S. Mane, International Journal of All Research Education and Scientific Methods, 10, 76 (2022).
 
9. P.I. Baranskii, A.E. Belyaev, G.P. Gaidar, Kinetic Effects in Multi-Valley Semiconductors, Naukova Dumka: Kyiv, (2019), p. 448.
 
10. H. Klym, A. Ingram, O. Shpotyuk, O. Hotra, A. Popov, Radiation Measurements, 90, 117 (2016).
https://doi.org/10.1016/j.radmeas.2016.01.023
 
11. H. Klym, I. Karbovnyk, M. Guidi, O. Hotra, A. Popov, Nanoscale research letters, 11, 132.1 (2016).
https://doi.org/10.1186/s11671-016-1293-0
 
12. A. El-Raheem, H. Abd El Rahman, E. Shaaban, N. Hamed, M. M. Wakkad, SSRN Electronic Journal, 4022315 (2022).
 
13. H. Klym, A. Ingram, O. Shpotyuk, J. Filipecki, I. Hadzaman, Physica Status Solidi c, 4, 715 (2007).
https://doi.org/10.1002/pssc.200673735
 
14. C. Chen, S. Min, Q. Guo, Z. Xia, D. Liu, F. Xia, Nano Letters, 21, 8385 (2021).
https://doi.org/10.1021/acs.nanolett.1c02972
 
15. J. Duran, Silicon-based infrared photodetectors for low-cost imaging applications, Thesis of Doctor of Philosophy in Electro-Optics, University of Dayton, Ohio, (2019), p. 177.
 
16. M. Wang at al., Advanced Optical Materials, 9, 2001546 (2021).
https://doi.org/10.1002/adom.202001546
 
17. M.G. Bartmann at al., Nanotechnology, 33, 245201 (2022).
https://doi.org/10.1088/1361-6528/ac5aec
 
18. L. Reid at al., IEEE 16th International Conference on Group IV Photonics (GFP), 1 (2019)
https://doi.org/10.1109/GROUP4.2019.8853928
 
19. L. Reid at al., IEEE 17th International Conference on Group IV Photonics (GFP), 1 (2021).
https://doi.org/10.1109/GFP51802.2021.9673858
 
20. N.P. Khuchua at al., Nanotechnology Perceptions, 10, 91 (2014)
https://doi.org/10.4024/N09KH14A.ntp.010.02
 
21. N. Khuchua at al., Solid State Phenomena, 242, 374 (2016).
https://doi.org/10.4028/www.scientific.net/SSP.242.374
 
22. S. V.Luniov, M. V. Khvyshchun, V. T. Maslyuk, IEEE 11th International Scientific and Practical Conference on Electronics and Information Technologies (ELIT), 295 (2019).
https://doi.org/10.1109/ELIT.2019.8892276
 
23. S. V. Luniov, M. V. Khvyshchun, A. I. Tsyz, V. T. Maslyuk, IEEE 12th International Conference on Electronics and Information Technologies (ELIT), 18 (2021).
https://doi.org/10.1109/ELIT53502.2021.9501152
 
24. G. Korotcenkov, Introduction in IR detectors. In Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors: Volume 2, Photodetectors. Cham: Springer International Publishing, (2023), p. 3-22.
https://doi.org/10.1007/978-3-031-20510-1_1
 
25. Y. U. Peter, M. Cardona, Fundamentals of semiconductors: physics and materials properties, Springer Science & Business Media, (2010), p. 639.
 
26. V.P. Markevich at al., Applied Physics Letters, 81, 1821 (2002).
https://doi.org/10.1063/1.1504871
 
27. V.P. Markevich at al., Physica B: Condensed Matter, 340, 844 (2003).
https://doi.org/10.1016/j.physb.2003.09.227
 
28. S.V. Luniov, A.I. Zimych, P.F. Nazarchuk, V.T. Maslyuk, I.G. Megela, Nuclear Physics and AtomicEnergy, 17, 47 (2016).
https://doi.org/10.15407/jnpae2016.01.047
 
29. S. V. Luniov, A.I. Zimych, P.F. Nazarchuk, V.T. Maslyuk, I.G. Megela, Journal of Physical Studies, 19, 4704 (2015)
https://doi.org/10.30970/jps.19.4704
 
30. I.A. Kaplunov, V. E. Rogalin, Photonics, 13, 88 (2019).
https://doi.org/10.22184/FRos.2019.13.1.88.106
 
31. L.I. Murin, V.P. Markevich, T. Hallberg, J.L. Lindström, Sol. St. Phenomena, 69-70, 309 (1999).
https://doi.org/10.4028/www.scientific.net/SSP.69-70.309
 
32. J.M. Trombetta, G.D. Watkins, Appl. Phys. Lett., 51, 1103 (1987).
https://doi.org/10.1063/1.98754
 
33. M.I. Gritsenko, O.O.Kobzar, Yu.V Pomozov, M.G. Sosnin, L.I. Khirunenko, Ukr. J. Phys.. 55, 222 (2010).
 
34. Sergiy Luniov, Andriy Zimych, Mykola Khvyshchun, Mykola Yevsiuk, Volodymyr Maslyuk, Eastern-European Journal of Enterprise Technologies, 6, 35 (2018).
https://doi.org/10.15587/1729-4061.2018.150959
 
35. S.V. Luniov, V.V. Lyshuk, V.T. Maslyuk, O. V. Burban, Latvian Journal of Physics and Technical Sciences, 56, 45 (2019).
https://doi.org/10.2478/lpts-2019-0030
 
36. A.V. Fedosov, S.V. Luniov, S.A. Fedosov, Ukrainian Journal of Physics, 56, 69 (2011).
https://doi.org/10.15407/ujpe56.1.69