Funct. Mater. 2025; 32 (2): 190-193.

doi:https://doi.org/10.15407/fm32.02.190

Resistive investigation of pressure effect on the temperature dependence of the pseudogap in Y0.66Pr0.34Ba2Cu3O7-δsingle crystals accounting for the BCS - BEC crossover

G.Ya. Khadzhai1, I. Goulatis2, A. Chroneos2,3, V.M.P. Simoes1, R.V. Vovk 1

1 V.N. Karazin Kharkiv National University, 61022, Svoboda Sq. 4, Kharkiv, Ukraine
2Department of Electrical and Computer Engineering, University of Thessaly, 38334 Volos, Greece
3 Department of Materials, Imperial College London, London SW7 2BP, United Kingdom

Abstract: 

The effect of high hydrostatic pressure on the electrical conductivity, σ(Т), in the basal ab plane of the high-temperature superconductor (HTSC) Y0.66Pr0.34Ba2Cu3O7-δ single crystals was investigated. It was determined that excess conductivity Δσ(T) of the studied samples in a certain temperature range Tf < T < T* are characterized by a modified exponential temperature dependence Δσ ~ ( 1-T/T*)exp(Δ*ab/T), (T* is the mean field temperature of the superconducting transition), which is interpreted in terms of the BCS-BEC crossover theory. An increase in external pressure leads to a narrowing of the temperature range for the existence of a pseudogap (PG) regime, resulting an expansion of the linear temperature dependence of electrical resistivity in the basal ab plane.

Keywords: 
excess conductivity; doping; Y<sub>1-x</sub>Pr<sub>x</sub>Ba<sub>2</sub>Cu<sub>3</sub>O<sub>7-&delta;</sub> single crystals; high-temperature superconductivity; crossover; pseudogap state
References: 
1. R.V. Vovk, A.L Solovyov, Low Temp. Phys. 44, 81 (2018)
https://doi.org/10.1063/1.5020905
 
2. M. Akhavan, B 321, 265 (2002)
https://doi.org/10.1016/S0921-4526(02)00860-8
 
3. H.A. Borges and M.A. Continentino, Solid State Commun. 80, 197 (1991)
https://doi.org/10.1016/0038-1098(91)90180-4
 
4. R.V. Vovk, M. A. Obolenskii, A. A. Zavgorodniy, I. L. Goulatis, A. Chroneos, E.V. Biletskiy, J. Alloys Compd. 485, 121 (2009)
https://doi.org/10.1016/j.jallcom.2009.05.132
 
5. A.I. Chroneos, I.L. Goulatis and R.V. Vovk, Acta Chim. Slov. 54, 179 (2007)
 
6. D.D. Prokofyev, M.P. Volkov, Yu.A. Boikov, Phys. Solid State 45, 1168 (2003)
https://doi.org/10.1134/1.1594234
 
7. A.L. Solovjov, L.V. Omelchenko, E.V. Petrenko, R.V. Vovk, V.V Khotkevych, and A. Chroneos, Sci Rep 9, 20424 (2019)
https://doi.org/10.1038/s41598-019-45286-w
 
8. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61(1999)
https://doi.org/10.1088/0034-4885/62/1/002
 
9. E. Babaev, H. Kleinert, Phys. Rev. B. 159, 12083 (1999)
https://doi.org/10.1007/978-94-011-4742-2_13
 
10. A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, O.V. Dobrovolskiy, S.N. Kamchatnaya, D.M. Sergeyev, Curr. Appl Phys. 16, 931 (2016)
https://doi.org/10.1016/j.cap.2016.05.014
 
11. A. L. Solovjov, E. V. Petrenko, L. V. Omelchenko, R.V. Vovk, I. L. Goulatis and A. Chroneos, Sci Rep 9: 9274 (2019).
https://doi.org/10.1038/s41598-019-45286-w
 
12. Yu.V.Litvinov, G.Ya.Khadzhai, A.V.Samoilov et al., Funct. Mater., 26, 3, 462 (2019).
 https://doi.org/10.15407/fm26.023.462
 
13. N.A. Azarenkov, V.N. Voevodin, R.V. Vovk et al., Funct. Mater., 25, 2, 234 (2018).
 https://doi.org/10.15407/fm25.02.234
 
14. A.V.Bondarenko, A.A.Prodan, M.A.Obolenskii, R.V.Vovk, T.R.Arouri., Low Temperature Physics 27, N5, 339 (2001).
https://doi.org/10.1063/1.1374717
 
15. A.V.Bondarenko, V.A.Shklovskij, R.V.Vovk, M.A.Obolenskii, and A.A.Prodan, Low Temp. Phys., 23(12), 962 (1997).
https://doi.org/10.1063/1.593511
 
16. R. V. Vovk, C. D. H. Williams, and A. F. G. Wyatt, Phys. Rev. Lett. 91, 235302 (2003).
 
17. R. V. Vovk, C. D. H. Williams, and A. F. G. Wyatt, Phys. Rev. B 68, 134508 (2003).
 
18. R. V. Vovk, C. D. H. Williams, and A. F. G. Wyatt, Phys. Rev. B 69, 144524 (2004).
 
19. R. V. Vovk, C. D. H. Williams, and A. F. G. Wyatt, Phys. Rev. B 72, 054506 (2005).