Funct. Mater. 2025; 32 (2): 223-231.

doi:https://doi.org/10.15407/fm32.02.223

Influence of electrospark alloying parameters on steel surface quality during nitrocarburizing

N.V.Tarelnyk1, D.B.Hlushkova2, O.P.Haponova3,4, Ie.V.Konoplianchenko1, V.O.Skrypnikov2

1Sumy National Agrarian University, 160 Herasima Kondratieva Str., 40021 Sumy, Ukraine
2Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Str., 61002 Kharkiv, Ukraine
3Sumy State University, 116, Kharkivska Str., 40007 Sumy, Ukraine
4Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5B, 02-106, Warsaw, Poland

Abstract: 

In the article, due to the conducted research, there have been established the dependences of the quality parameters of the steel part surfaces while nitrocarburizing thereof by the ESA method on the energy parameters of the equipment (discharge energy, Wр) and the technological parameters of the process (labor intensity, τ). The experimental studies have shown that with an increase in the discharge energy there increases the thickness of the strengthened layer, and its microhardness, as well as the surface roughness and its continuity. With an increase in the labor intensity, the thickness of the strengthened layer, its microhardness, and the surface continuity also increase, and the surface roughness almost does not change.

Keywords: 
electrospark alloying, special technological saturating media, nitrocarburizing, surface layer, quality parameters.
References: 

1. T.V. Mosina, Novye Ogneupory (New Refractories), 9, 61-64 (2013). https://doi.org/10.17073/1683-4518-2013-9-61-64

2. D.Sc. Pradeep Rohatgi, JOM, 43, 10-15 (1991). https://doi.org/10.1007/BF03220538

3, V. Tarelnyk, I. Konoplianchenko, N. Tarelnyk, A. Kozachenko, Materials Science Forum, 968, 131–142 (2019). https://doi.org/10.4028/www.scientific.net/msf.968.131

4. V.B. Tarelnik, O.P. Gaponova, E.V. Konoplyantschenko, N.S. Yevtushenko, V.A. Gerasimenko, Metallofizika i Noveishie Tekhnologii, 40 (6), 795-815 (2018). https://doi.org/10.15407/mfint.40.06.0795

5. F.A. P. Fernandes, S.C. Heck, R.G. Pereira, A. Lombardi-Neto, G.E. Totten, L.C. Casteletti, Journal of Achievements in Materials and Manufacturing Engineering, 40(2), 175-179 (2010).

6. S. Yeh, L. Chiu, H. Chang, Engineering, 3, 942-948 (2011). http://dx.doi.org/10.4236/eng.2011.39116

7. S. Ben Slima, Materials Sciences and Applications, 9 (3), 640-644 (2012) http://dx.doi.org/10.4236/msa.2012.39093

8. Y. Han, E. Yu, H. Zhang, D. Huang, Journal of Applied Thermal Engineering, 51 (1-2), 212-217 (2013). https://doi.org/10.1016/j.applthermaleng.2012.08.032

9. H. Li, L. He, K. Gai, R. Jiang, C. Zhang, M. Li, Journal of Materials and Design, 87, 863-876 (2015). https://doi.org/10.1016/j.matdes.2015.08.094

10. I.Y. Lee, S. M. Tak, I.S. Pack and S.S. Lee, Journal of the Society for Aerospace System Engineering, 11 (3), 1-7 (2017). https://doi.org/10.20910/JASE.2017.11.3.1

11. B. Antoszewski, S. Tofil, M. Scendo, W. Tarelnik, IOP Conference Series: Materials Science and Engineering, 233 (1), 012036 (2017). https://doi.org/10.1088/1757-899X/233/1/012036

12. V.G. Smelov, A.V. Sotov, S.A. Kosirev, ARPN Journal of Engineering and Applied Sciences, 9 (10), 1854-1858 (2014).

13. I. Pliszka, N. Radek, Procedia Engineering, 192, 707-712 (2017). https://doi.org/10.1016/j.proeng.2017.06.122

14. A.D. Pogrebnjak, A.A. Bagdasaryan, P. Horodek, V. Tarelnyk, V.V. Buranich, H. Amekura, N. Okubo, N. Ishikawa, V.M. Beresnev, Materials Letters, 303, 130548 (2021). https://doi.org/10.1016/j.matlet.2021.130548

15. J. Muñoz-García, L. Vázquez, R. Cuerno, J.A. Sánchez-García, M. Castro, R. Gago, Toward Functional Nanomaterials. LNNST. New York: Springer (2009). https://doi.org/10.1007/978-0-387-77717-7_10

16. F. Frost, B. Ziberi, A. Schindler, B. Rauschenbach, Appl. Phys. A, 91, 551-559 (2008). https://doi.org/10.1007/s00339-008-4516-0

17. O.P. Umanskyi, M.S. Storozhenko, V.B. Tarelnyk, O.Y. Koval, Y.V. Gubin, N.V. Tarelnyk, T.V. Kurinna, Powder Metallurgy and Metal Ceramics, 59, 57-67. (2020). https://doi.org/10.1007/s11106-020-00138-5

18. M.S. Storozhenko, A.P. Umanskii, A.E. Terentiev, I.M. Zakiev, Powder metallurgy and Metal Ceramics, 56 (1-2), 60-69 (2017). https://doi.org/10.1007/s11106-017-9872-x

19. O. Umanskyi, M. Storozhenko, G. Baglyuk, O. Melnyk, V. Brazhevsky, O. Chernyshov, O.Terentiev, Yu. Gubin, O Kostenko, I. Martsenyuk, Powder Metallurgy and Metal Ceramics, 59, 434–444 (2020). https://doi.org/10.1007/s11106-020-00177-y

20. L. Ropyak, I. Schuliar, O. Bohachenko, Eastern-European Journal of Enterprise Technologies, 1 (5), 53-62 (2016). https://doi.org/10.15587/1729-4061.2016.59850

21. М.М. Student, V.M. Dovhunyk V.M., Posuvailo, I.V. Koval′chuk, V.M. Hvozdets′kyi, Materials Science, 53 (3), 359-367 (2017). https://doi.org/10.1007/s11003-017-0083-x

22. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, V. Lozynskyi, Energies, 15 (1), 83 (2022). https://doi.org/10.3390/en15010083

23. V. Tarelnyk, V. Martsynkovskyy, A. Dziuba, Applied Mechanics and Materials, 630, 388-396 (2014). https://doi.org/10.4028/www.scientific.net/AMM.630.388

24. V. Martsinkovsky, V. Yurko, V. Tarelnik, Y. Filonenko, Procedia Engineering, 39, 157-167 (2012). https://doi.org/10.1016/j.proeng.2012.07.020

25. V. Martsynkovskyy, V. Tarelnyk, I. Konoplianchenko, O. Gaponova, M. Dumanchuk, Lecture Notes in Mechanical Engineering, 216-225 (2020). https://doi.org/10.1007/978-3-030-22365-6_22

26. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, L. Ropyak, Materials, 15 (14), 5074 (2022). https://doi.org/10.3390/ma15145074

27. B.O. Trembach, M.G. Sukov, V.A. Vynar, I.O. Trembach, V.V. Subbotina, O.Yu. Rebrov, O.M. Rebrova, V.I. Zakiev, Metallofizika i Noveishie Tekhnologii, 44, (4) 493 (2022). https://doi.org/10.15407/mfint.44.04.0493

28. C.P. Klages, M. Fryda, T. Matthke, L. Schafer, H. Dimigen, International Journal of Refractory Metals & Hard Materials, 16, (3) 171–176 (1998). https://doi.org/10.1016/S0263-4368(98)80100-5

29. P. Karvankova, M.G.J. Veprek-Heijman, O. Zindulka, A. Bergmaier, S. Veprek, Surface and Coatings Technology, 163–164, 149–156 (2003). https://doi.org/10.1016/S0257-8972(02)00492-9

30. D.S. Rickerby, A. Matthews, Advanced Surface Coatings: a Handbook of Surface Engineering. Glasgow: Blackie; New York: Chapman and Hal (1991).

31. Q. Li, T.C. Lei, W.Z. Chen, Surface and Coatings Technology, 114, 285–291 (1999). https://doi.org/10.1016/S0257-8972(99)00056-0

32. J.A. Vreeling, V. Ocelík, J.T.M. Hosson, Acta Materialia, 50 (19), 4913–4924 (2002). https://doi.org/10.1016/S1359-6454(02)00366-X

33. J.N. Balaraju, K.S. Kalavati–Rajam, Surface & Coatings Technology, 205 (2), 575–581 (2010). https://doi.org/10.1016/j.surfcoat.2010.07.047

34. B. Antoszewski, O.P. Gaponova, V.B. Tarelnyk, O.M. Myslyvchenko, P. Kurp, T.I. Zhylenko, I. Konoplianchenko, Materials, 14 (4), 739 (2021) https://doi.org/10.3390/ma14040739

35. V.B. Tarelnyk, O.P. Gaponova, V.B. Loboda, E.V. Konoplyanchenko, V.S. Martsinkovskii, Y.I. Semirnenko, N.V. Tarelnyk, M.A. Mikulina, B.A. Sarzhanov, Surface Engineering and Applied Electrochemistry, 57, 173-184 (2021). https://doi.org/10.3103/S1068375521020113

36. F.K. Burumkulov, P.V. Senin, S.A. Velichko, V. I. Ivanov, P. A. Ionov, M. A. Okin, Surface Engineering and Applied Electrochemistry, 45, 455–460 (2009). https://doi.org/10.3103/S1068375509060039

37. V. Mihailov, N. Kazak, S. Ivashcu, E. Ovchinnikov, C. Baciu, A. Ianachevici, R. Rukuiza, A. Zunda, Coatings.; 13(3), 651 (2023). https://doi.org/10.3390/coatings13030651

38. V.B. Tarel′nyk, O.P. Gaponova, Y.V. Konoplyanchenko, M.Y. Dovzhyk, Metallofizika i Noveishie Tekhnologii, 38 (12), 1611-1633 (2016). https://doi.org/10.15407/mfint.38.12.1611

39. Tarelnyk, V.B., Gaponova, O.P., Konoplianchenko, I.V., Dovzhyk, M.Ya. Metallofizika i Noveishie Tekhnologii, 39 (3), 363-385 (2017). https://doi.org/10.15407/mfint.39.03.0363

40. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41 (1), 47-69 (2019). https://doi.org/10.15407/mfint.41.01.0047

41. V. Tarelnyk, V. Martsynkovskyy, Applied Mechanics and Materials, 630, 397-412 (2014). https://doi.org/10.4028/www.scientific.net/AMM.630.397

42. N.V. Tarelnyk, Metallofizika i Noveishie Tekhnologii, 44 (8), 1037–1058 (2022) https://doi.org/10.15407/mfint.44.08.1037

43. V. Martsinkovsky, V. Yurko, V. Tarelnik, Y. Filonenko, Procedia Engineering, 39, 148-156 (2012). https://doi.org/10.1016/j.proeng.2012.07.019

44. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy N.V. Tarelnyk, O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41(1), 47–69 (2019) https://doi.org/10.15407/mfint.41.01.0047

45. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41(2), 173–192 (2019). https://doi.org/10.15407/mfint.41.02.0173

46. O. Gaponova, C. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, I. Konoplianchenko, M. Dovzhyk, A. Belous, O. Vasilenko, Lecture Notes in Mechanical Engineering, 249-266 (2019). https://doi.org/10.1007/978-981-13-6133-3_25

47. V. B. Tarelnik, A. V. Paustovskii, Y. G. Tkachenko, V. S. Martsinkovskii, A. V. Belous, E. V. Konoplyanchenko, O. P. Gaponova, Surface Engineering and Applied Electrochemistry, 54, 147-156 (2018). https://doi.org/10.3103/S106837551802014X

48. O.P. Gaponova, V.B. Tarelnyk, B. Antoszewski, N. Radek, N.V. Tarelnyk, P. Kurp, O.M. Myslyvchenko, J. Hoffman, Materials, 15(17), 6085 (2022).