Funct. Mater. 2025; 32 (2): 223-231.
Influence of electrospark alloying parameters on steel surface quality during nitrocarburizing
1Sumy National Agrarian University, 160 Herasima Kondratieva Str., 40021 Sumy, Ukraine
2Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo Str., 61002 Kharkiv, Ukraine
3Sumy State University, 116, Kharkivska Str., 40007 Sumy, Ukraine
4Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5B, 02-106, Warsaw, Poland
In the article, due to the conducted research, there have been established the dependences of the quality parameters of the steel part surfaces while nitrocarburizing thereof by the ESA method on the energy parameters of the equipment (discharge energy, Wр) and the technological parameters of the process (labor intensity, τ). The experimental studies have shown that with an increase in the discharge energy there increases the thickness of the strengthened layer, and its microhardness, as well as the surface roughness and its continuity. With an increase in the labor intensity, the thickness of the strengthened layer, its microhardness, and the surface continuity also increase, and the surface roughness almost does not change.
1. T.V. Mosina, Novye Ogneupory (New Refractories), 9, 61-64 (2013). https://doi.org/10.17073/1683-4518-2013-9-61-64 | ||||
2. D.Sc. Pradeep Rohatgi, JOM, 43, 10-15 (1991). https://doi.org/10.1007/BF03220538 |
||||
3, V. Tarelnyk, I. Konoplianchenko, N. Tarelnyk, A. Kozachenko, Materials Science Forum, 968, 131-142 (2019). https://doi.org/10.4028/www.scientific.net/MSF.968.131 |
||||
4. V.B. Tarelnik, O.P. Gaponova, E.V. Konoplyantschenko, N.S. Yevtushenko, V.A. Gerasimenko, Metallofizika i Noveishie Tekhnologii, 40 (6), 795-815 (2018). https://doi.org/10.15407/mfint.40.06.0795 |
||||
5. F.A. P. Fernandes, S.C. Heck, R.G. Pereira, A. Lombardi-Neto, G.E. Totten, L.C. Casteletti, Journal of Achievements in Materials and Manufacturing Engineering, 40(2), 175-179 (2010). | ||||
6. S. Yeh, L. Chiu, H. Chang, Engineering, 3, 942-948 (2011). https://doi.org/10.4236/eng.2011.39116 |
||||
7. S. Ben Slima, Materials Sciences and Applications, 9 (3), 640-644 (2012) https://doi.org/10.4236/msa.2012.39093 |
||||
8. Y. Han, E. Yu, H. Zhang, D. Huang, Journal of Applied Thermal Engineering, 51 (1-2), 212-217 (2013). https://doi.org/10.1016/j.applthermaleng.2012.08.032 |
||||
9. H. Li, L. He, K. Gai, R. Jiang, C. Zhang, M. Li, Journal of Materials and Design, 87, 863-876 (2015) https://doi.org/10.1016/j.matdes.2015.08.094 |
||||
10. I.Y. Lee, S. M. Tak, I.S. Pack and S.S. Lee, Journal of the Society for Aerospace System Engineering, 11 (3), 1-7 (2017). https://doi.org/10.1155/2017/4104212 |
||||
11. B. Antoszewski, S. Tofil, M. Scendo, W. Tarelnik, IOP Conference Series: Materials Science and Engineering, 233 (1), 012036 (2017). https://doi.org/10.1088/1757-899X/233/1/012036 |
||||
12. V.G. Smelov, A.V. Sotov, S.A. Kosirev, ARPN Journal of Engineering and Applied Sciences, 9 (10), 1854-1858 (2014). | ||||
13. I. Pliszka, N. Radek, Procedia Engineering, 192, 707-712 (2017). https://doi.org/10.1016/j.proeng.2017.06.122 |
||||
14. A.D. Pogrebnjak, A.A. Bagdasaryan, P. Horodek, V. Tarelnyk, V.V. Buranich, H. Amekura, N. Okubo, N. Ishikawa, V.M. Beresnev, Materials Letters, 303, 130548 (2021). https://doi.org/10.1016/j.matlet.2021.130548 |
||||
15. J. Muñoz-García, L. Vázquez, R. Cuerno, J.A. Sánchez-García, M. Castro, R. Gago, Toward Functional Nanomaterials. LNNST. New York: Springer (2009). https://doi.org/10.1007/978-0-387-77717-7_10 |
||||
16. F. Frost, B. Ziberi, A. Schindler, B. Rauschenbach, Appl. Phys. A, 91, 551-559 (2008). https://doi.org/10.1007/s00339-008-4516-0 |
||||
17. O.P. Umanskyi, M.S. Storozhenko, V.B. Tarelnyk, O.Y. Koval, Y.V. Gubin, N.V. Tarelnyk, T.V. Kurinna, Powder Metallurgy and Metal Ceramics, 59, 57-67. (2020). https://doi.org/10.1007/s11106-020-00138-5 |
||||
18. M.S. Storozhenko, A.P. Umanskii, A.E. Terentiev, I.M. Zakiev, Powder metallurgy and Metal Ceramics, 56 (1-2), 60-69 (2017). https://doi.org/10.1007/s11106-017-9872-x |
||||
19. O. Umanskyi, M. Storozhenko, G. Baglyuk, O. Melnyk, V. Brazhevsky, O. Chernyshov, O.Terentiev, Yu. Gubin, O Kostenko, I. Martsenyuk, Powder Metallurgy and Metal Ceramics, 59, 434-444 (2020). https://doi.org/10.1007/s11106-020-00177-y |
||||
20. L. Ropyak, I. Schuliar, O. Bohachenko, Eastern-European Journal of Enterprise Technologies, 1 (5), 53-62 (2016). https://doi.org/10.15587/1729-4061.2016.59850 |
||||
21. М.М. Student, V.M. Dovhunyk V.M., Posuvailo, I.V. Koval′chuk, V.M. Hvozdets′kyi, Materials Science, 53 (3), 359-367 (2017). https://doi.org/10.1007/s11003-017-0083-x |
||||
22. O. Bazaluk, O. Dubei, L. Ropyak, M. Shovkoplias, T. Pryhorovska, V. Lozynskyi, Energies, 15 (1), 83 (2022). https://doi.org/10.3390/en15010083 |
||||
23. V. Tarelnyk, V. Martsynkovskyy, A. Dziuba, Applied Mechanics and Materials, 630, 388-396 (2014). https://doi.org/10.4028/www.scientific.net/AMM.630.388 https://doi.org/10.4028/www.scientific.net/AMM.630.388 |
||||
24. V. Martsinkovsky, V. Yurko, V. Tarelnik, Y. Filonenko, Procedia Engineering, 39, 157-167 (2012) https://doi.org/10.1016/j.proeng.2012.07.020 |
||||
25. V. Martsynkovskyy, V. Tarelnyk, I. Konoplianchenko, O. Gaponova, M. Dumanchuk, Lecture Notes in Mechanical Engineering, 216-225 (2020). https://doi.org/10.1007/978-3-030-22365-6_22 |
||||
26. M. Bembenek, P. Prysyazhnyuk, T. Shihab, R. Machnik, O. Ivanov, L. Ropyak, Materials, 15 (14), 5074 (2022). https://doi.org/10.3390/ma15145074 |
||||
27. B.O. Trembach, M.G. Sukov, V.A. Vynar, I.O. Trembach, V.V. Subbotina, O.Yu. Rebrov, O.M. Rebrova, V.I. Zakiev, Metallofizika i Noveishie Tekhnologii, 44, (4) 493 (2022). https://doi.org/10.15407/mfint.44.04.0493 |
||||
28. C.P. Klages, M. Fryda, T. Matthke, L. Schafer, H. Dimigen, International Journal of Refractory Metals & Hard Materials, 16, (3) 171-176 (1998). https://doi.org/10.1016/S0263-4368(98)80100-5 |
||||
29. P. Karvankova, M.G.J. Veprek-Heijman, O. Zindulka, A. Bergmaier, S. Veprek, Surface and Coatings Technology, 163-164, 149-156 (2003). https://doi.org/10.1016/S0257-8972(02)00492-9 |
||||
30. D.S. Rickerby, A. Matthews, Advanced Surface Coatings: a Handbook of Surface Engineering. Glasgow: Blackie; New York: Chapman and Hal (1991). https://doi.org/10.1007/978-94-011-3040-0 |
||||
31. Q. Li, T.C. Lei, W.Z. Chen, Surface and Coatings Technology, 114, 285-291 (1999). https://doi.org/10.1016/S0257-8972(99)00056-0 |
||||
32. J.A. Vreeling, V. Ocelík, J.T.M. Hosson, Acta Materialia, 50 (19), 4913-4924 (2002). https://doi.org/10.1016/S1359-6454(02)00366-X |
||||
33. J.N. Balaraju, K.S. Kalavati-Rajam, Surface & Coatings Technology, 205 (2), 575-581 (2010). https://doi.org/10.1016/j.surfcoat.2010.07.047 |
||||
34. B. Antoszewski, O.P. Gaponova, V.B. Tarelnyk, O.M. Myslyvchenko, P. Kurp, T.I. Zhylenko, I. Konoplianchenko, Materials, 14 (4), 739 (2021) https://doi.org/10.3390/ma14040739 |
||||
35. V.B. Tarelnyk, O.P. Gaponova, V.B. Loboda, E.V. Konoplyanchenko, V.S. Martsinkovskii, Y.I. Semirnenko, N.V. Tarelnyk, M.A. Mikulina, B.A. Sarzhanov, Surface Engineering and Applied Electrochemistry, 57, 173-184 (2021). https://doi.org/10.3103/S1068375521020113 |
||||
36. F.K. Burumkulov, P.V. Senin, S.A. Velichko, V. I. Ivanov, P. A. Ionov, M. A. Okin, Surface Engineering and Applied Electrochemistry, 45, 455-460 (2009). https://doi.org/10.3103/S1068375509060039 |
||||
37. V. Mihailov, N. Kazak, S. Ivashcu, E. Ovchinnikov, C. Baciu, A. Ianachevici, R. Rukuiza, A. Zunda, Coatings.; 13(3), 651 (2023). https://doi.org/10.3390/coatings13030651 |
||||
38. V.B. Tarel′nyk, O.P. Gaponova, Y.V. Konoplyanchenko, M.Y. Dovzhyk, Metallofizika i Noveishie Tekhnologii, 38 (12), 1611-1633 (2016). https://doi.org/10.15407/mfint.38.12.1611 |
||||
39. Tarelnyk, V.B., Gaponova, O.P., Konoplianchenko, I.V., Dovzhyk, M.Ya. Metallofizika i Noveishie Tekhnologii, 39 (3), 363-385 (2017). https://doi.org/10.15407/mfint.39.03.0363 |
||||
40. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41 (1), 47-69 (2019). https://doi.org/10.15407/mfint.41.01.0047 |
||||
41. V. Tarelnyk, V. Martsynkovskyy, Applied Mechanics and Materials, 630, 397-412 (2014). https://doi.org/10.4028/www.scientific.net/AMM.630.397 |
||||
42. N.V. Tarelnyk, Metallofizika i Noveishie Tekhnologii, 44 (8), 1037-1058 (2022) https://doi.org/10.15407/mfint.44.08.1037 |
||||
43. V. Martsinkovsky, V. Yurko, V. Tarelnik, Y. Filonenko, Procedia Engineering, 39, 148-156 (2012). https://doi.org/10.1016/j.proeng.2012.07.019 |
||||
44. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy N.V. Tarelnyk, O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41(1), 47-69 (2019) https://doi.org/10.15407/mfint.41.01.0047 |
||||
45. V.B. Tarelnyk, O.P. Gaponova, Ye.V. Konoplianchenko, V.S. Martsynkovskyy, N.V. Tarelnyk, O.O. Vasylenko, Metallofizika i Noveishie Tekhnologii, 41(2), 173-192 (2019). https://doi.org/10.15407/mfint.41.02.0173 |
||||
46. O. Gaponova, C. Kundera, G. Kirik, V. Tarelnyk, V. Martsynkovskyy, I. Konoplianchenko, M. Dovzhyk, A. Belous, O. Vasilenko, Lecture Notes in Mechanical Engineering, 249-266 (2019). https://doi.org/10.1007/978-981-13-6133-3_25 |
||||
47. V. B. Tarelnik, A. V. Paustovskii, Y. G. Tkachenko, V. S. Martsinkovskii, A. V. Belous, E. V. Konoplyanchenko, O. P. Gaponova, Surface Engineering and Applied Electrochemistry, 54, 147-156 (2018). https://doi.org/10.3103/S106837551802014X |
||||
48. O.P. Gaponova, V.B. Tarelnyk, B. Antoszewski, N. Radek, N.V. Tarelnyk, P. Kurp, O.M. Myslyvchenko, J. Hoffman, Materials, 15(17), 6085 (2022). https://doi.org/10.3390/ma15176085 |
||||