Funct. Mater. 2025; 32 (2): 266-271.

doi:https://doi.org/10.15407/fm32.02.266

Peculiarities of influence of anionic modification on formation of Na+, Mg2+, Zn2+-containing calcium phosphates

N. Yu. Strutynska1, Ye. O. Komashchenko1, O.V. Livitska2, M.S. Slobodyanik1

1 Taras Shevchenko National University of Kyiv, Volodymyrska Str. 64/13, 01601 Kyiv, Ukraine
2Enamine Ltd, 78 Winston Churchill Str., 02094, Kyiv, Ukraine

Abstract: 

The paper presents a study of the effect of adding carbonate or borate anions to the initial solution of the Ca2+-Mg2+-Zn2+-Na+-PO43- system on the formation of calcium phosphates containing Na+, Mg2+, Zn2+. In the Сa2+-Mg2+-Zn2+-Na+-PO43- system, the biphasic calcium phosphates (mixture of phases based on Са10(РО4)6(ОН)2 and β-Са3(РО4)2) have been obtained. It was established that an increase in the amount of Zn2+ in the initial solution leads to an increase in the content of phase β-Са3(РО4)2 from 25wt% to 75wt% in biphasic calcium phosphates and its particles size from 35 to 71 nm. In vitro tests of the modified calcium phosphates with different anionic composition in model solution at 37°C showed the highest activity: an increase in pH more than 35% after first 48 hours and for 14 days of the study for calcium carbonate apatite phosphate containing Na+(0,5wt%), Mg2+ (0.5wt%) and Zn2+(1.7wt%). At the same time, borate-containing phosphate with a similar content of trace elements showed activity only during first 48 hours with a pH change of 20%. Obtained results showed the possibility of obtaining apatite-related modified calcium phosphate with different dissolution rates by changing the nature of anionic dopant when designing materials for orthopedics.

Keywords: 
zinc; magnesium; sodium; hydroxyapatite; tricalcium phosphate.
References: 
1. Y. Gou, K. Qi, Y. Wei et al., Nano TransMed, 3, 100033 (2024).
https://doi.org/10.1016/j.ntm.2024.100033
 
2. R. Drevet, J. Fauré, H. Benhayoune, Coatings, 13, 1091 (2023).
https://doi.org/10.3390/coatings13061091
 
3. S. Panda, C.K. Biswas, S. Paul, Ceramics International, 47, 20, 28122 (2021).
https://doi.org/10.1016/j.ceramint.2021.07.100
 
4. C.I. Codrea, D. Lincu, I. Atkinson et at., Materials, 17, 1472 (2024).
https://doi.org/10.3390/ma17071472
 
5. J. Jeong, J.H. Kim, J.H. Shim et al., Biomater Res., 23, 4 (2019).
https://doi.org/10.1186/s40824-018-0149-3
 
6. T. Lu, Y. Miao, X. Yuan, et al., Ceramics International, 49, 10, 15588 (2023).
https://doi.org/10.1016/j.ceramint.2023.01.148
 
7. S.-M. Huang, S.-M. Liu, W.-C. et al., Pharmaceuticals,15, 7, 885 (2022).
https://doi.org/10.3390/ph15070885
 
8. O. Mishchenko, A. Yanovska, O. Kosinov, et al., Polymers, 15, 18, 3822 (2023).
https://doi.org/10.3390/polym15183822
 
9. M. Furko, C. Balázsi, Morphological, Materials, 13, 20, 4690 (2020).
https://doi.org/10.3390/ma13204690
 
10. S. Sutha, G. Karunakaran, V. Rajendran, Ceramics International, 39, 5, 5205 (2013).
https://doi.org/10.1016/j.ceramint.2012.12.019
 
11. T. Liu, M. Jin, Y. Zhang, et al., Ceramics International, 47, 21, 30929 (2021).
https://doi.org/10.1016/j.ceramint.2021.07.277
 
12. S. Tabassum, Handbook of Ionic Substituted Hydroxyapatites, 117-148 (2020).
https://doi.org/10.1016/B978-0-08-102834-6.00005-7
 
13. K. Midorikawa, S. Hiromoto, T. Yamamoto, Ceramics International, 50, 4, 6784 (2024).
https://doi.org/10.1016/j.ceramint.2023.12.021
 
14. K. Hayashi, C. Zhang, A.N.T. Alashkar et al., Appl Mater Interfaces, 16, 35, 45956 (2024).
https://doi.org/10.1021/acsami.4c08047
 
15. O. Gokcekaya, C. Ergun, T.J. Webster, et al., Ceramics International, 49, 5, 7506 (2023).
https://doi.org/10.1016/j.ceramint.2022.10.232
 
16. A.E. Pazarçeviren, A. Tezcaner, D. Keskin, et al., Biol Trace Elem Res, 199, 968 (2021).
https://doi.org/10.1007/s12011-020-02230-8
 
17. N. Strutynska, I. Zatovsky, N. Slobodyanik, et al., Eur. J. Inorg. Chem. 2015, 622 (2015).
https://doi.org/10.1002/ejic.201402761
 
18. C.C. Kee, H. Ismail, M.N. Ahmad-Fauzi, J. Mater. Sci. Technol. 29 (8), 761 (2013).
https://doi.org/10.1016/j.jmst.2013.05.016