Funct. Mater. 2025; 32 (2): 277-291.
Langmuir-Blodgett technology for creating electrochemiluminescent sensors
1Institute for Scintillation Materials of the National Academy of Sciences of Ukraine, 60 Nauky Ave, 61072, Kharkiv, Ukraine
2Kharkiv National University of Radio Electronics, Department of Biomedical Engineering, 14 Nauky Ave, 61166, Kharkiv, Ukraine
3National Technical University «Kharkiv Polytechnic Institute», 2 Kyrpychova str., 61002, Kharkiv, Ukraine
4Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
This paper is devoted to the study of the properties of Langmuir-Blodgett films for electrochemiluminescence (ECL) analytical applications. Films of 9,10-diphenylanthracene (DPA) and rubrene in a matrix of polymeric and monomeric substances were investigated for surface wetting, photoluminescence, morphological, electrochemical and ECL characteristics. The results showed that the orientation of phosphor molecules in monomer and polymer films differs, which affects their wettability with water. According to the solid-phase fluorescence analysis, polymethyl methacrylate (PMMA) is a more effective transfer agent for DPA compared to stearic acid, since films based on it give a more intense fluorescence blue spectrum compared to the monomer. The atomic force microscopy (AFM) data show that polymethyl methacrylate forms periodic structures in the form of globules and plates, and the surface of the pure electrode is fine-grained with nanoscale structural elements. According to cyclic voltammetry, it can be seen that with an increase in the number of film layers, the electrochemical properties of the modified electrodes deteriorate, while the surface of different electrodes degrades equally. The ECL system based on film electrodes with tetraphenylborate co-reagent gives a noticeable ECL signal that is linear with the concentration of the co-reagent. Overall, the results emphasize the complex interplay between film structure, surface properties, and electrochemical performance, providing valuable information for the development of advanced sensor technologies.
1. W. Miao, ′Electrogenerated Chemiluminescence and Its Biorelated Applications′, Chem. Rev., 108, 2506, 2008, doi: 10.1021/cr068083a.
2. G. F. Blackburn et al., Clin. Chem., 37, 1534, 1991. doi: 10.1093/clinchem/37.9.1534.
3. L. Bouffier and N. Sojic, ′Chapter 1. Introduction and Overview of Electrogenerated Chemiluminescence′, in Detection Science, N. Sojic, Ed., Cambridge: Royal Society of Chemistry, 2019, pp. 1–28. doi: 10.1039/9781788015776-00001.
4. A. J. Bard, Ed., Electrogenerated Chemiluminescence, CRC Press, 2004. doi: 10.1201/9780203027011.
5. S. Mahadevarao Premnath and M. Zubair, ′Electrochemiluminescence Method′, in StatPearls, Treasure Island (FL): StatPearls Publishing, 2024. http://www.ncbi.nlm.nih.gov/books/NBK594228/ (accessed 08 November 2024).
6. E. Scorsone, S. Stewart, and M. Hamel, ′Highly Sensitive and Selective Detection of L-Tryptophan by ECL Using Boron-Doped Diamond Electrodes′, Sensors, vol. 24, no. 11, p. 3627, Jun. 2024, doi: 10.3390/s24113627.
7. J. Wu and H. X. Ju, ′Clinical Immunoassays and Immunosensing′, in Comprehensive Sampling and Sample Preparation, Elsevier, 2012, pp. 143–167. doi: 10.1016/B978-0-12-381373-2.00071-5.
8. R. Wilson, C. Clavering, and A. Hutchinson, , Anal. Chem., 75, 16, 4244, 2003, doi: 10.1021/ac034163s.
9. H. S. White and A. J. Bard, J. Am. Chem. Soc.,
104, 6891, 1982, doi: 10.1021/ja00389a001.
10. Z. Liu, W. Qi, and G. Xu,, Chem. Soc. Rev., 44, 3117, 2015, doi: 10.1039/C5CS00086F.
11. K. Brown, R. S. Blake, D. W. Robinson, and L. Dennany, J. Electroanal. Chem., 941, 117521, 2023, doi: 10.1016/j.jelechem.2023.117521.
12. A. J. Bard, Electrogenerated chemiluminescence. in Monographs in electroanalytical chemistry and electrochemistry. New York: M. Dekker, 2004.
13. A. J. Bard, J. D. Debad, J. K. Leland, G. B. Sigal, J. L. Wilbur, and J. N. Wohlstadter, ′Chemiluminescence, Electrogenerated′, in Encyclopedia of Analytical Chemistry, 1st ed., R. A. Meyers, Ed., Wiley, 2000. doi: 10.1002/9780470027318.a5302.
14. H. Ahsan, Comp. Clin. Pathol., 31, 333, 2021, doi: 10.1007/s00580-021-03302-4.
15. L. Bouffier, S. Arbault, A. Kuhn, and N. Sojic, Innov. Technol., May 2018, doi: 10.51257/a-v1-p156.
16. X. Lv et al., Appl. Bio Mater., 3, 8933, 2020, doi: 10.1021/acsabm.0c01201.
17. J.-L. Liu, Z.-L. Tang, J.-Q. Zhang, Y.-Q. Chai, Y. Zhuo, and R. Yuan, Anal. Chem., 90, 5298, 2018, doi: 10.1021/acs.analchem.8b00209.
18. V. Gaudin, ′Receptor-based electrochemical biosensors for the detection of contaminants in food products′, in Electrochemical Biosensors, Elsevier, 2019, pp. 307–365. doi: 10.1016/B978-0-12-816491-4.00011-5.
19. M. Dramićanin, ′Lanthanide and Transition Metal Ion Doped Materials for Luminescence Temperature Sensing′, in Luminescence Thermometry, Elsevier, 2018, pp. 113–157. doi: 10.1016/B978-0-08-102029-6.00006-3.
20. Y. Zholudov, D. Snizhko, A. Kukoba, H. Bilash, and M. Rozhitskii, Electrochimica Acta, 54, 360, 2008, doi: 10.1016/j.electacta.2008.07.069.
21. A. Fujimori, ′Langmuir-Blodgett (LB) Film′, in Encyclopedia of Polymeric Nanomaterials, S. Kobayashi and K. Müllen, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 1–7. doi: 10.1007/978-3-642-36199-9_145-1.
22. Y. Zholudov, D. Snizhko, A. Kukoba, and O. Bilash, ′Automated Electrochemiluminescent Analyzer for Research and Biomedical Assay′, in 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine: IEEE, Oct. 2021, pp. 439–444. doi: 10.1109/PICST54195.2021.9772152.
23. D. Snizhko, ′"Pulsar" Photon Counter in Electrogenerated Chemiluminescent Measurements′, PRZEGLĄD ELEKTROTECHNICZNY, vol. 1, no. 7, pp. 31–36, Jul. 2021, doi: 10.15199/48.2021.07.0.
24. O. N. Bezkrovnaya, Y. N. Savin, and M. V. Dobrotvorskaya, Functional Materials, 13, 687, 2006.
25. D. Martynov, D. Snizhko, M. Slipchenko, and Y. Zholudov, ′Technology of Electrochemiluminescence Sensors Based on Langmuir-Blodgett Films with Polycyclic Organic Phosphors′, in 2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine: IEEE, Oct. 2023, pp. 1–5. doi: 10.1109/KhPIWeek61412.2023.10312840.
26. D. Martynov, Y. Zholudov, and D. Snizhko, ′, UA patent #152984, 2023.
27. Y. S. Obeng and A. J. Bard, Langmuir, 7, 195, 1991, doi: 10.1021/la00049a035.
28. P. Dynarowicz-Latka, A. Wnętrzak, and A. Chachaj-Brekiesz, J. R. Soc. Interface, 21, 20230559, 2024, doi: 10.1098/rsif.2023.0559.
29. H. Seo et al., Adv. Mater., 29, 1605587, 2017, doi: 10.1002/adma.201605587.
30. Y. Zholudov, O. Bilash, A. Kukoba, M. Rozhitskii, The Analyst, 136, 598, 2011, doi: 10.1039/C0AN00589D.