Funct. Mater. 2025; 32 (2): 306-314.

doi:https://doi.org/10.15407/fm32.02.306

Evaluation of selectivity and sensitivity of gallium nitride nanosensor for grabbing metal/metalloid ions (Na+, K+, Sn2+, Pb2+, Al3+) from water: materials modelling approach towards environmental treatment

Fatemeh Mollaamin

Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey

Abstract: 

The goal of this research is selecting metal/metalloid ions of (Na+, K+, Sn2+, Pb2+, Al3+) from water due to nanomaterial-based gallium nitride nanocage (Ga–N). Ga–N was modeled in the presence of metal/metalloid cations (Na+, K+, Sn2+, Pb2+, Al3+). Moreover, the results of chemical shielding calculations exhibited remarkable fluctuations in the metal elements Na+, K+, Sn2+, Pb2+, Al3+ due to the capture of Ga–N in the periodic framework of H2O molecules. This research work confirms the selectivity of metal ion capture by Ga–N nanodetector as: K+> Na+>>> Sn2+ ≈ Pb2+ > Al3+. Finally, it has been shown that for a given number of N-donor sites in the Ga–N nanosensor, the stabilities of monovalent (M+), divalent (M2+) and trivalent (M3+) cation complexes are K+↔ Ga–N > Na+↔ Ga–N >>> Sn2+↔ Ga–N ≈ Pb2+↔ Ga–N > Al3+↔ Ga–N.

Keywords: 
Metal/loid ion selection; water purification, Ga–N; nanomaterials application.
References: 
1. L. Lajoie, A.-S. Fabiano-Tixier, F. Chemat, Pharmaceuticals, 15, 1507 (2022). 
https://doi.org/10.3390/ph15121507
 
2. M. Wang; Z. Wang, J. Zhang, J. Zhan, C. Wu, W. Yu, W. Fan, J. Tang, Q. Zhang, J. Zhang, ACS Sustain. Chem. Eng., 10, 10369 (2022). 
https://doi.org/10.1021/acssuschemeng.2c03138
 
3. C. Micheau, A. Schneider, L. Girard, P. Bauduin, Colloid Surf. A, 470, 52 (2015).
https://doi.org/10.1016/j.colsurfa.2015.01.049
 
4. R. Ghosh, A. Sahu, S. Pushpavanam, J. Hazard. Mater., 367, 589 (2019).
https://doi.org/10.1016/j.jhazmat.2018.12.105
 
5. K. Matsuoka, H. Miura, S. Karima, C. Taketaka, S. Ouno, Y. Moroi, J. Mol. Liq., 263, 89 (2018).
https://doi.org/10.1016/j.molliq.2018.04.136
 
6. G. Lindblom, B. Lindman, G.J.T. Tiddy, J. Am. Chem. Soc. 100, 2299 (1978).
https://doi.org/10.1021/ja00476a005
 
7. I.D. Leigh, M.P. McDonald, R.M. Wood, G.J.T. Tiddy, M.H. Trevethan, J. Chem. Soc. Faraday Trans.1 , 77, 2867(1981).
https://doi.org/10.1039/f19817702867
 
8. N. Schwierz, D. Horinek, R.R. Netz, Langmuir, 26, 7370 (2010).
https://doi.org/10.1021/la904397v
 
9. M.H. Ropers, G. Czichocki, G. Brezesinski, J. Phys. Chem. B, 107, 5281 (2003).
https://doi.org/10.1021/jp0264329
 
10. L. Lajoie, A.-S. Fabiano-Tixier, F. Chemat, Pharmaceuticals, 15, 1507 (2022). 
https://doi.org/10.3390/ph15121507
 
11. E. Sadatshojaei, D.A. Wood, Water, the Most Accessible Eco-Friendly Solvent, and Extraction and Separation Agent. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 283-292.
https://doi.org/10.1016/B978-0-12-821884-6.00012-7
 
12. Y. Cheng, F. Xue, S. Yu, S. Du, Y. Yang, Molecules, 26, 4004, 2021
https://doi.org/10.3390/molecules26134004
 
13. M. Wang, Z. Wang, J. Zhang, J. Zhan, C. Wu, W. Yu, W. Fan, J. Tang, Q. Zhang, J. Zhang, ACS Sustain. Chem. Eng., 10, 10369 (2022). 
https://doi.org/10.1021/acssuschemeng.2c03138
 
14. Akira Hiratsuka, Yoshiro Yasuda, Journal of Water Resource and Protection. 13(1), 44-73, (2021). 
https://doi.org/10.4236/jwarp.2021.131004
 
15. D. A. Gidlow, "Lead toxicity," Occupational Medicine, 65, no. 5, 348 (2015).
https://doi.org/10.1093/occmed/kqv018
 
16. T. Vincent, P. Krys, C. Jouannin, A.-C. Gaumont, I. Dez, and E. Guibal, Journal of Oanometallic Chemistry, 723, 90 (2013).
https://doi.org/10.1016/j.jorganchem.2012.10.008
 
17. J. Czulak, C. Jouannin, T. Vincent, I. Dez, A.-C. Gaumont, and E. Guibal, Separation Science and Technology, 47, no. 14-15, 2166 (2012).
 
18. R. Singh, N. Gautam, A. Mishra, R. Gupta, Indian Journal of Pharmacology, 43, no. 3, 246 (2011).
https://doi.org/10.4103/0253-7613.81505
 
19. S. Zhang, H. Gao, J. Li et al., Journal of Hazardous Materials, 321, 92 (2017).
https://doi.org/10.1016/j.jhazmat.2016.09.004
 
20. Richa Jain. Recent advances of magnetite nanomaterials to remove arsenic from water. RSC Adv. 2022 12(50): 32197-32209.
https://doi.org/10.1039/D2RA05832D
 
21. P. Rybarczyk, B. Kawalec-Pietrenko Processes.; 9(2), 301 (2021). 
https://doi.org/10.3390/pr9020301
 
22. B. Rathinam, V. Murugesan, B.-T. Liu, Chemosensors, 10, 69 (2022). 
https://doi.org/10.3390/chemosensors10020069
 
23. R.S. Roy, A.Mondal, & P.K. Nandi, J Mol Model, 23, 93 (2017). 
https://doi.org/10.1007/s00894-017-3273-4
 
24. R. Dennington, T. A. Keith, J.M. Millam, GaussView, Version 6.06.16, Semichem Inc., Shawnee Mission, KS, 2016.
 
25. G Henkelman, A Arnaldsson, and H Jónsson, Computational Materials Science, 36(3), 354 (2006).
https://doi.org/10.1016/j.commatsci.2005.04.010
 
26. P.E. Blöchl, Phys. Rev. B., 50, 17953 (1994).
https://doi.org/10.1103/PhysRevB.50.17953
 
27. P. Hohenberg, W. Kohn, Phys. Rev. B, 136, B864-B871 (1964).
https://doi.org/10.1103/PhysRev.136.B864
 
28. Kohn, W., Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 1965, 140, A1133- A1138.
https://doi.org/10.1103/PhysRev.140.A1133
 
29. C. Lee, W. Yang, R.G. Parr, Phys Rev B, 37, 785 (1988).
https://doi.org/10.1103/PhysRevB.37.785
 
30. Takeshi Yanai, David P. Tew, Nicholas C. Handy, Chemical Physics Letters. 393(1-3), 51, (2004).
https://doi.org/10.1016/j.cplett.2004.06.011
 
31. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.Scuseria, M. A. Robb,; et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
 
32. J. A. S. Smith, Journal of Chemical Education. 48, 39, (1971).
https://doi.org/10.1021/ed048p39
 
33. K Appendix: Nuclear quadrupole resonance, by Allen N. Garroway, Naval Research Laboratory. In Jacqueline MacDonald, J. R. Lockwood: Alternatives for Landmine Detection. Report MR-1608, Rand Corporation, 2003.
 
34. O. Kh. Poleshchuck, E.L. Kalinna, J. N. Latosinska, J. Koput, Journal of Molecular Structure (Theochem) 547 (2001) 233 - 243.
https://doi.org/10.1016/S0166-1280(01)00636-4
 
35. A. Young, Hugh, Roger D. Freedman, Sears and Zemansky′s University Physics with Modern Physics (13th ed.). Boston: Addison-Wesley. p. 754 (2012).