Funct. Mater. 2025; 32 (3): 361-366.

doi:https://doi.org/10.15407/fm32.03.361

Changes in heat transfer in PbSe1-xTex semiconductor solid solutions under transition to the impurity continuum

O.I. Rogachova, O.S. Vodoriz, T.V. Tavrina, K.V. Martynova, O.M. Nashchekina, V.Y. Martseniuk

National technical university "Kharkiv polytechnic institute", 2 Kyrpychov St., 61002 Kharkiv, Ukraine

Abstract: 

Lead chalcogenides PbX (X = S, Se, Te) and their solid solutions are well-known as promising materials for thermoelectric generators, infrared detectors, photoresistors, and related applications, and interest in their study continues to grow. An important physical characteristic that determines the possibility of practical use of these materials is thermal conductivity and particularly its dependence on composition, temperature, and other external parameters. The purpose of this work was to investigate the composition dependence of the power-law coefficient β in the temperature dependence of the lattice thermal conductivity λp(T) on the composition for the PbSe1-xTex solid solutions within the range x = 0-0.045. The dependence β(x) in the temperature interval 150-350 K was plotted. It was found that the β(x) dependence exhibits a complex oscillatory behavior: a pronounced sharp maximum appears near x = 0.005, and additional rather intense maxima are observed near x = 0.015 and x = 0.025. The obtained β(x) dependence agrees very well with the previously established λp(x) behavior. The observed effects are interpreted in terms of a percolation-type phase transition associated with the emergence of an impurity continuum, as well as subsequent self-organization processes (short-range ordering) within the solid solution.

Keywords: 
References: 

1. D.M. Rowe (Ed.) CRC Handbook of Thermoelectrics, London, New York, Washington: CRC Press, Boca Raton, 1995.

2. L. Chen, R. Liu, X. Shi, Thermoelectric Materials and Devices, China, Science Publishing & Media Ltd. Published by Elsevier Inc; 2020.

3. A. Rogalski, Prog. Quantum Electron, 27 (2-3), 59 (2003). https://doi.org/10.1016/S0079-6727(02)00024

4. E.I. Rogacheva, O.N. Nashchekina, M.S. Dresselhaus, J. Thermoelectricity, 4, 82 (2005).

5. E.I. Rogacheva, J. Thermoelectricity, 2, 61 (2007).

6. E.I. Rogacheva, O.N. Nashchekina, Percolation effects in semiconductor IV-VI based solid solutions and thermoelectric materials science, in: Chong Rae Park, Advanced Thermoelectric Materials (ed), John Wiley & Sons Inc, New York, 2020, pp. 383 – 436.

7. D. Stauffer, A. Aharony, Introduction to Percolation Theory, DC: Taylor & Francis, London, Washington, 1992.

8. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors, Springer-Verlag, New York, 1984.

9. E.I. Rogacheva, O.S. Vodorez, J. Thermoelectricity, 2, 61 (2013).

10. E.I. Rogacheva, O.S. Vodorez, O.N. Nashchekina, M.S. Dresselhaus, Phys. St. Sol. B, 251, 1231 (2014). https://doi.org/10.1002/pssb.201350293

11. O.S. Vodoriz, T.V. Tavrina, G.O. Nikolaenko, O.I. Rogachova, Metallofiz. Noveishie Tekhnol, 42, 487 (2020) (in Ukrainian). https://doi.org/10.15407/mfint.42.04.0487

12. G.O. Nikolaenko, O.S. Vodoriz, O.I. Rogacheva, T.V. Tavrina, G.V. Lisachuk, J. Thermoelectricity, 4, 5 (2020). https://doi.org/10.63527/1607-8829-2020-4

13. E.I. Rogacheva, G.O. Nikolaenko, A.V. Meriuts, O.N. Nashchekina, https://doi.org/10.1080/01411594.2024.2352436

14. R. Berman, Thermal conduction in solids, Clarendon Press, Oxford, 1976.

15. V.M. Mogilevskii, A.F. Chudnovskii, Thermal conductivity of semiconductors, Nauka, Moscow, 1972.

16. Yu.I. Ravich, B.A. Efimova, I.A. Smirnov, Semiconducting Lead Chalcogenides, Plenum Press, New York, 1970.

17. R. Basu, Sh. Bhattacharya, R. Bhatt, A. Singh, D.K. Aswal, Sh.K. Gupta, J. Electr. Mater., 42, 2292 (2013).

18. J.Q. Li, S.P. Li, Q.B. Wang, L. Wang, F.S. Liu, W.Q. Ao, J. Alloys and Compounds, 509, 4516 (2011). https://doi.org/10.1016/j.jallcom.2011.01.033

19. .L. Pei, Y. Liu, J. Alloys and Compounds, 514, 40 (2012). https://doi.org/10.1016/j.jallcom.2011.10.036

20. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Nature. Letter, 473, 66 (2011). https://doi.org/10.1038/nature09996

21. T.M. Tritt, Thermal conductivity: theory, properties, and applications, Kluwer Academic, Plenum Publishers, New York, 2004.