Funct. Mater. 2025; 32 (3): 372-379.
Synthesis, electronic structure and morphological features of composite films based on ZnO and calcium hydroxyapatite for conductive layers of solar cells with encapsulating properties
1Kurdyumov Institute of Metallophysics of the National Academy of Sciences of Ukraine, 36 Vernadsky Blvd. 03142, Kyiv, Ukraine
2Bakul Institute of Superhard Materials of the National Academy of Sciences of Ukraine, 2 Avtozavodska St., 04074, Kyiv, Ukraine
For the first time, the structural and morphological characteristics of ZnO-apatite composite films at varying concentrations of apatite have been comprehensively studied for practical applications as a current-carrying layer of solar cells with encapsulating properties. Notably, surface nanoclusters with a characteristic size of approximately 10 nm have been observed. Furthermore, the peculiarities of electron charge redistribution during the formation of the ZnO/apatite interface have been elucidated. This process involves a redistribution of electron density on the oxygen atoms and an enhancement of symmetry around the PO4 tetrahedra. Additionally, it has been determined that an increase in the calcium hydroxoapatite content in the film leads to a widening of the band gap in comparison to pure ZnO. The most optimal characteristics are achieved for the encapsulating layer of ZnO/apatite with a component ratio of 3:1.
1. I. Bąk, K. Cheba, Green Energy. Green Energy and Technology. Springer, Cham, 1-16 (2023).
2. O.A. Al-Shahri, F.B. Ismail, M.A. Hannan, Journal of Cleaner Production 284(19-E), 125465 (2021).
3. J. Yan, T. J. Savenije, L. Mazzarella and O. Isabella, Sustainable Energy Fuels, 6, 243-266 (2022).
4. P. Roy, A. Ghosh, F. Barclay, et al., Coatings, 12(8), 1089 (2022).
5. Y. Zhao, Q. Ye, Z. Chu, et al., Energy Environ. Mater., 2, 93-106 (2019).
6. N. Jeon, J. Noh, W. Yang, et al., Nature, 517, 476–480 (2015).
7. P. Su, Y. Liu, J. Zhang, et al., J. Phys. Chem. Lett., 11(8), 2812–2817 (2020).
8. H. Luo, P. Li, J Ma, et al., Advanced Energy Materials, 12(30), 2201242 (2022).
9. R. K. Raman, S. a. G. Thangavelu, S. Venkataraj, A. Krishnamoorthy, Renewable and Sustainable Energy Reviews, 151(80), 111608 (2021).
10. S. Chen, Y. Deng, H. Gu, et al., Nature Energy, 5(12), 1003–1011 (2020).
11. X. Li, F. Zhang, H. He, et al., Nature, 578, 555–558 (2020).
12. Y. Jiang, L. Qiu, E. J. Juarez-Perez, et al., Nature Energy, 4(9), 585–593 (2019).
13. M. Z. Mokhtar, A. Altujjar, B. Wang, et al., Commun Mater, 3(1), 77 (2022).
14. M.Z. Mokhtar, J. He, M. Li, et al., Chem. Commun., 57(8), 994-997 (2021).
15. S. Y. Park, J.-S. Park, B. J. Kim, et al., Nat. Sustain. 3(12), 1044–1051 (2020).
16. D. Arcos, M. Vallet-Regí, J. Mater. Chem. B 8(9), 1781–1800 (2020).
17. Y. Liu, Y. Tang, J. Wu, et al., J. Colloid Interface Sci. 570, 402–410 (2020).
18. A. Das, D. Pamu, D.S. Gomes, et al., Ceramica, 65(374), 282–302 (2019).
19. A. P. Shpak, V. L. Karbovskii, N. A. Kurgan, et al., Functional materials, 12(4), 695-699 (2005)
20. V.L. Karbivskyy, A.P Shpak, N.A. Kurgan, et al., J. Functional Materials, 18(2), 195-199 (2011).
21. V. L. Karbivskyy, N. A. Kurgan, A.S. Litovchenko, et al., J. Materials Science and Engineering, 3(12), 52-56.
22. I. L. Balasooriya, J. Chen, S. M. K. Gedara, et al., Nanomaterials, 12(14), 2324 (2022).
23. Z. Li, Y. Qiu, D. Zhao, et al., Sci Total Environ. 904, 166918 (2023).
24. V. Karbivskyy, N. Kurgan, M. Huntush, et al., J. Appl. Phys. 135(6), 065102 (2024).
25. A. Perez-Tomas, A. Mingorance, D. Tanenbaum, M. Lira-Cantu, Elsevier, 8, 267-356 (2018).
26. C. Otalora, M. A. Botero, G. Ordo<0x00F1>ez, Journal of Materials Science, 56(28), 15538–15571 (2021).
27. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi. (b) 15(2), 627–637 (1966).
28. P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9(23), 6814–6817 (2018).
29. V.V. Zaika, N.K. Shvachko, V.L. Karbivskyy, et al., Nanosistemi, nanomateriali, nanotehnologyi., 22(2), 229-238. (2024).